論文の概要: Attribute Prototype Network for Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2008.08290v4
- Date: Thu, 6 May 2021 09:13:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 08:58:48.208582
- Title: Attribute Prototype Network for Zero-Shot Learning
- Title(参考訳): ゼロショット学習のための属性プロトタイプネットワーク
- Authors: Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, Zeynep Akata
- Abstract要約: 差別的グローバルな特徴と局所的な特徴を共同で学習するゼロショット表現学習フレームワークを提案する。
本モデルでは,画像中の属性の視覚的証拠を指摘し,画像表現の属性ローカライゼーション能力の向上を確認した。
- 参考スコア(独自算出の注目度): 113.50220968583353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From the beginning of zero-shot learning research, visual attributes have
been shown to play an important role. In order to better transfer
attribute-based knowledge from known to unknown classes, we argue that an image
representation with integrated attribute localization ability would be
beneficial for zero-shot learning. To this end, we propose a novel zero-shot
representation learning framework that jointly learns discriminative global and
local features using only class-level attributes. While a visual-semantic
embedding layer learns global features, local features are learned through an
attribute prototype network that simultaneously regresses and decorrelates
attributes from intermediate features. We show that our locality augmented
image representations achieve a new state-of-the-art on three zero-shot
learning benchmarks. As an additional benefit, our model points to the visual
evidence of the attributes in an image, e.g. for the CUB dataset, confirming
the improved attribute localization ability of our image representation.
- Abstract(参考訳): ゼロショット学習研究の開始以来、視覚属性が重要な役割を果たすことが示されている。
属性に基づく知識を既知のクラスから未知のクラスに伝達するために,属性ローカライゼーション機能を統合した画像表現はゼロショット学習に有用である。
そこで本研究では,クラスレベルの属性のみを用いて,識別的グローバルな特徴と局所的な特徴を共同で学習するゼロショット表現学習フレームワークを提案する。
ビジュアル・セマンティックな埋め込み層はグローバルな特徴を学習するが、局所的な特徴は属性のプロトタイプネットワークを通じて学習される。
局所性拡張画像表現は3つのゼロショット学習ベンチマークで新たな最先端を実現することを示す。
さらに,画像中の属性の視覚的証拠,例えばCUBデータセットについて,画像表現の属性ローカライゼーション能力の向上を確認した。
関連論文リスト
- High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
一般化ゼロショット学習(HDAFL)のための高識別属性特徴学習(High-Discriminative Attribute Feature Learning)という革新的な手法を提案する。
HDAFLは複数の畳み込みカーネルを使用して、画像の属性と高い相関性を持つ識別領域を自動的に学習する。
また、属性間の識別能力を高めるために、Transformerベースの属性識別エンコーダを導入する。
論文 参考訳(メタデータ) (2024-04-07T13:17:47Z) - Attribute Localization and Revision Network for Zero-Shot Learning [13.530912616208722]
ゼロショット学習により、モデルは属性などの補助的な意味情報の助けを借りて、目に見えないカテゴリを認識できる。
本稿では,局所的な特徴とグローバルな特徴の選択がゼロサムゲームではなく,グローバルな特徴が属性の理解に寄与することを発見した。
論文 参考訳(メタデータ) (2023-10-11T14:50:52Z) - Dual Feature Augmentation Network for Generalized Zero-shot Learning [14.410978100610489]
ゼロショット学習 (ZSL) は,見知らぬクラスから知識を伝達することによって,サンプルを訓練せずに新しいクラスを推論することを目的としている。
ZSLの既存の埋め込みベースのアプローチは、画像上の属性を見つけるために注意機構を用いるのが一般的である。
本稿では,2つの機能拡張モジュールからなる新しいDual Feature Augmentation Network (DFAN)を提案する。
論文 参考訳(メタデータ) (2023-09-25T02:37:52Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
属性ローカライズ機能を統合した画像表現は、任意のショット、すなわちゼロショットと少数ショットのイメージ分類タスクに有用である、と我々は主張する。
クラスレベルの属性のみを用いてグローバルな特徴とローカルな特徴を共同で学習する新しい表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-04T02:25:40Z) - TransZero++: Cross Attribute-Guided Transformer for Zero-Shot Learning [119.43299939907685]
ゼロショット学習(ZSL)は、目に見えるクラスから目に見えないクラスに意味的知識を移すことによって、新しいクラス認識問題に取り組む。
既存の注意に基づくモデルは、一方向の注意のみを用いることで、単一の画像で劣る領域の特徴を学習するのに苦労している。
視覚的特徴を洗練し,属性の正確なローカライゼーションを学習するために,TransZero++と呼ばれるクロス属性誘導型トランスフォーマーネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-16T05:49:51Z) - TransZero: Attribute-guided Transformer for Zero-Shot Learning [25.55614833575993]
ゼロショット学習(ZSL)は、目に見えるクラスから目に見えないクラスに意味的知識を移すことによって、新しいクラスを認識することを目的としている。
本稿では,属性誘導型トランスフォーマーネットワークであるTransZeroを提案する。
論文 参考訳(メタデータ) (2021-12-03T02:39:59Z) - Region Semantically Aligned Network for Zero-Shot Learning [18.18665627472823]
本研究では、未確認クラスの局所的特徴をそれらの意味属性にマッピングする地域意味ネットワーク(RSAN)を提案する。
出力の特定の領域から各属性を取得し、これらの属性を認識に活用する。
いくつかの標準ZSLデータセットの実験では、提案したRSAN法の利点が示され、最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-10-14T03:23:40Z) - Goal-Oriented Gaze Estimation for Zero-Shot Learning [62.52340838817908]
識別的属性の局在性を改善するために, 目標指向視線推定モジュール(GEM)を提案する。
属性記述に導かれた新しい物体を認識する視覚注意領域を得るために,実際の人間の視線位置を予測することを目的とする。
この研究は、高レベルのコンピュータビジョンタスクに人間の視線データセットと自動視線推定アルゴリズムを集めることの有望な利点を示しています。
論文 参考訳(メタデータ) (2021-03-05T02:14:57Z) - CompGuessWhat?!: A Multi-task Evaluation Framework for Grounded Language
Learning [78.3857991931479]
本稿では,属性を用いたグラウンドド言語学習のための評価フレームワークGROLLAを提案する。
また、学習したニューラル表現の品質を評価するためのフレームワークの例として、新しいデータセットCompGuessWhat!?を提案する。
論文 参考訳(メタデータ) (2020-06-03T11:21:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。