Dynamical decoupling in interacting systems: applications to
signal-enhanced hyperpolarized readout
- URL: http://arxiv.org/abs/2008.08323v1
- Date: Wed, 19 Aug 2020 08:22:11 GMT
- Title: Dynamical decoupling in interacting systems: applications to
signal-enhanced hyperpolarized readout
- Authors: A. Ajoy, R. Nirodi, A. Sarkar, P. Reshetikhin, E. Druga, A. Akkiraju,
M. McAllister, G. Maineri, S. Le, A. Lin, A. M. Souza, C. A. Meriles, B.
Gilbert, D. Suter, J. A. Reimer, A. Pines
- Abstract summary: Hamiltonian engineering the inter-spin coupling while simultaneously suppressing dephasing noise on qubits.
We observe effective lifetimes of 13C nuclei $Tprimeapprox$2.5s at room temperature, an extension of over 4700-fold over conventional $Tast$ free induction decay.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods that preserve coherence broadly impact all quantum information
processing and metrology applications. Dynamical decoupling methods accomplish
this by protecting qubits in noisy environments but are typically constrained
to the limit where the qubits themselves are non-interacting. Here we consider
the alternate regime wherein the inter-qubit couplings are of the same order as
dephasing interactions with the environment. We propose and demonstrate a
multi-pulse protocol that protects transverse spin states by suitably
Hamiltonian engineering the inter-spin coupling while simultaneously
suppressing dephasing noise on the qubits. We benchmark the method on 13C
nuclear spin qubits in diamond, dipolar coupled to each other and embedded in a
noisy electronic spin bath, and hyperpolarized via optically pumped NV centers.
We observe effective state lifetimes of 13C nuclei $T_2^{\prime}\approx$2.5s at
room temperature, an extension of over 4700-fold over the conventional
$T_2^{\ast}$ free induction decay. The spins are continuously interrogated
during the applied quantum control, resulting in 13C NMR line narrowing and an
$>$500-fold boost in SNR due to the lifetime extension. Together with
hyperpolarization spin interrogation is accelerated by $>10^{11}$ over
conventional 7T NMR. This work suggests strategies for the dynamical decoupling
of coupled qubit systems with applications in a variety of experimental
platforms.
Related papers
- A coherence sweet spot with enhanced dipolar coupling [0.0]
We demonstrate a compromise-free singlet-triplet (ST) qubit, where the qubit couples maximally to the driving field.
We demonstrate a spin qubit sweet spot maximizing the dipolar coupling and simultaneously minimizing the decoherence.
These findings pave the way for enhanced engineering of these nanomaterials for next-generation qubit technologies.
arXiv Detail & Related papers (2024-05-17T14:06:48Z) - Two-qubit logic between distant spins in silicon [0.5561396798949833]
In this work, we utilize a superconducting resonator to facilitate a coherent interaction between two semiconductor spin qubits 250 $mu$m apart.
Results hold promise for scalable networks of spin qubit modules on a chip.
arXiv Detail & Related papers (2023-10-25T17:37:03Z) - Robust Oscillator-Mediated Phase Gates Driven by Low-Intensity Pulses [0.0]
We present a method that leads to faster-than-dispersive entanglement gates with low-intensity pulses.
Our method is applicable to any quantum platform that has qubits interacting with bosonic mediators via longitudinal coupling.
We show that entanglement gates with infidelities of $10-3$ or $10-4$ are possible with current or near-future experimental setups.
arXiv Detail & Related papers (2022-09-29T14:30:26Z) - Distinguishing multi-spin interactions from lower-order effects [0.0]
Multi-spin interactions can be engineered with artificial quantum spins.
It is challenging to verify such interactions experimentally.
Here we describe two methods to characterize the $n$-local coupling of $n$ spins.
arXiv Detail & Related papers (2021-11-24T19:00:01Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Controlling directed atomic motion and second-order tunneling of a
spin-orbit-coupled atom in optical lattices [8.118975693510722]
We show that the spin-orbit (SO) coupling adds some new results to the tunneling dynamics in both multiphoton resonance and far-off-resonance parameter regimes.
These results may be relevant to potential applications such as spin-based quantum information processing and design of novel spintronics devices.
arXiv Detail & Related papers (2020-11-03T00:54:03Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Algorithmic Cooling of Nuclear Spin Pairs using a Long-Lived Singlet
State [48.7576911714538]
We show that significant cooling is achieved on an ensemble of spin-pair systems by exploiting the long-lived nuclear singlet state.
This is the first demonstration of algorithmic cooling using a quantum superposition state.
arXiv Detail & Related papers (2019-12-31T09:57:03Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.