Learning Attribute-Based and Relationship-Based Access Control Policies
with Unknown Values
- URL: http://arxiv.org/abs/2008.08444v4
- Date: Mon, 23 Nov 2020 18:45:06 GMT
- Title: Learning Attribute-Based and Relationship-Based Access Control Policies
with Unknown Values
- Authors: Thang Bui and Scott D. Stoller
- Abstract summary: This paper presents the first algorithms for mining ABAC and ReBAC policies from access control lists (ACLs) and incomplete information about entities.
We show that the core of this problem can be viewed as learning a concise three-valued logic formula from a set of labeled feature vectors containing unknowns.
- Score: 0.6662800021628273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attribute-Based Access Control (ABAC) and Relationship-based access control
(ReBAC) provide a high level of expressiveness and flexibility that promote
security and information sharing, by allowing policies to be expressed in terms
of attributes of and chains of relationships between entities. Algorithms for
learning ABAC and ReBAC policies from legacy access control information have
the potential to significantly reduce the cost of migration to ABAC or ReBAC.
This paper presents the first algorithms for mining ABAC and ReBAC policies
from access control lists (ACLs) and incomplete information about entities,
where the values of some attributes of some entities are unknown. We show that
the core of this problem can be viewed as learning a concise three-valued logic
formula from a set of labeled feature vectors containing unknowns, and we give
the first algorithm (to the best of our knowledge) for that problem.
Related papers
- IBAC Mathematics and Mechanics: The Case for 'Integer Based Access Control' of Data Security in the Age of AI and AI Automation [0.0]
Current methods for data access control, especially regarding AI and AI automation, face unique challenges in ensuring appropriate data access.
We introduce aggregated-Based Access Control (IBAC), addressing the limitations of Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC)
IBAC's mathematical foundations enable its application to relational and document authorization.
arXiv Detail & Related papers (2024-10-24T06:19:57Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Comparison of Access Control Approaches for Graph-Structured Data [0.0]
Graph-structured data requires advanced, flexible, and fine-grained access control due to its complex structure.
Several research works focus on protecting property graph-structured data, enforcing fine-grained access control, and proving the feasibility and applicability of their concept.
We select works from our systematic literature review on authorization and access control for different database models in addition to recent ones.
arXiv Detail & Related papers (2024-05-31T12:31:05Z) - ConstraintChecker: A Plugin for Large Language Models to Reason on
Commonsense Knowledge Bases [53.29427395419317]
Reasoning over Commonsense Knowledge Bases (CSKB) has been explored as a way to acquire new commonsense knowledge.
We propose **ConstraintChecker**, a plugin over prompting techniques to provide and check explicit constraints.
arXiv Detail & Related papers (2024-01-25T08:03:38Z) - A Simple Baseline for Knowledge-Based Visual Question Answering [78.00758742784532]
This paper is on the problem of Knowledge-Based Visual Question Answering (KB-VQA)
Our main contribution in this paper is to propose a much simpler and readily reproducible pipeline.
Contrary to recent approaches, our method is training-free, does not require access to external databases or APIs, and achieves state-of-the-art accuracy on the OK-VQA and A-OK-VQA datasets.
arXiv Detail & Related papers (2023-10-20T15:08:17Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
We develop a data augmentation framework based on ensembling retriever models that captures relevant text segments from unlabeled policy documents.
To improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascade them with noise reduction filter models.
Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%.
arXiv Detail & Related papers (2022-04-19T15:45:23Z) - Toward Deep Learning Based Access Control [3.2511618464944547]
This paper proposes Deep Learning Based Access Control (DLBAC) by leveraging significant advances in deep learning technology.
DLBAC could complement and, in the long-term, has the potential to even replace, classical access control models with a neural network.
We demonstrate the feasibility of the proposed approach by addressing issues related to accuracy, generalization, and explainability.
arXiv Detail & Related papers (2022-03-28T22:05:11Z) - Boosting Weakly Supervised Object Detection via Learning Bounding Box
Adjusters [76.36104006511684]
Weakly-supervised object detection (WSOD) has emerged as an inspiring recent topic to avoid expensive instance-level object annotations.
We defend the problem setting for improving localization performance by leveraging the bounding box regression knowledge from a well-annotated auxiliary dataset.
Our method performs favorably against state-of-the-art WSOD methods and knowledge transfer model with similar problem setting.
arXiv Detail & Related papers (2021-08-03T13:38:20Z) - Adaptive ABAC Policy Learning: A Reinforcement Learning Approach [2.5997274006052544]
We propose an adaptive ABAC policy learning approach to automate the authorization management task.
In particular, we propose a contextual bandit system, in which an authorization engine adapts an ABAC model through a feedback control loop.
We focus on developing an adaptive ABAC policy learning model for a home IoT environment as a running example.
arXiv Detail & Related papers (2021-05-18T15:18:02Z) - An Automatic Attribute Based Access Control Policy Extraction from
Access Logs [5.142415132534397]
An attribute-based access control (ABAC) model provides a more flexible approach for addressing the authorization needs of complex and dynamic systems.
We present a methodology for automatically learning ABAC policy rules from access logs of a system to simplify the policy development process.
arXiv Detail & Related papers (2020-03-16T15:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.