論文の概要: Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters
- arxiv url: http://arxiv.org/abs/2008.08692v1
- Date: Wed, 19 Aug 2020 22:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 12:44:48.265302
- Title: Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters
- Title(参考訳): カモフラージュ詐欺師に対するグラフニューラルネットワークに基づく不正検出の強化
- Authors: Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S. Yu
- Abstract要約: 近年の実証研究,すなわち特徴カモフラージュと関係カモフラージュの2種類のカモフラージュを紹介した。
既存のGNNはこれらの2つのカモフラージュに対処していない。
カモフラージュ抵抗型GNN(CARE-GNN)と呼ばれる新しいモデルを提案し、カモフラージュに対する3つのユニークなモジュールを用いたGNN集約プロセスを強化する。
- 参考スコア(独自算出の注目度): 78.53851936180348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been widely applied to fraud detection
problems in recent years, revealing the suspiciousness of nodes by aggregating
their neighborhood information via different relations. However, few prior
works have noticed the camouflage behavior of fraudsters, which could hamper
the performance of GNN-based fraud detectors during the aggregation process. In
this paper, we introduce two types of camouflages based on recent empirical
studies, i.e., the feature camouflage and the relation camouflage. Existing
GNNs have not addressed these two camouflages, which results in their poor
performance in fraud detection problems. Alternatively, we propose a new model
named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation
process with three unique modules against camouflages. Concretely, we first
devise a label-aware similarity measure to find informative neighboring nodes.
Then, we leverage reinforcement learning (RL) to find the optimal amounts of
neighbors to be selected. Finally, the selected neighbors across different
relations are aggregated together. Comprehensive experiments on two real-world
fraud datasets demonstrate the effectiveness of the RL algorithm. The proposed
CARE-GNN also outperforms state-of-the-art GNNs and GNN-based fraud detectors.
We integrate all GNN-based fraud detectors as an opensource toolbox:
https://github.com/safe-graph/DGFraud. The CARE-GNN code and datasets are
available at https://github.com/YingtongDou/CARE-GNN.
- Abstract(参考訳): 近年,グラフニューラルネットワーク(GNN)は不正検出問題に広く適用されており,近隣情報を異なる関係で集約することで,ノードの疑似性を明らかにする。
しかし、詐欺師のカモフラージュ行動に気付いていない先行研究は、集約プロセス中にGNNベースの詐欺検知器の性能を阻害する可能性がある。
本稿では,最近の実証研究に基づく2種類のカモフラージュ,すなわち特徴カモフラージュと関係カモフラージュを紹介する。
既存のGNNはこれらの2つのカモフラージュに対処していない。
また,CARE-GNN(CAmouflage-Resistant GNN)と呼ばれる新しいモデルを提案する。
具体的には,まず,情報的隣接ノードを見つけるためのラベル認識類似度尺度を考案する。
次に、強化学習(RL)を活用して、選択すべき隣人の最適な量を求める。
最後に、異なる関係にまたがる選択された隣人を集約する。
2つの実世界の不正データセットに関する総合実験は、RLアルゴリズムの有効性を示す。
提案されたCARE-GNNは、最先端のGNNやGNNベースの不正検知器よりも優れている。
我々は、すべてのGNNベースの不正検知器をオープンソースツールボックスとして統合する。
CARE-GNNのコードとデータセットはhttps://github.com/YingtongDou/CARE-GNNで公開されている。
関連論文リスト
- ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
グラフニューラルネットワーク(GNN)は,グラフベースのタスクにおいて,目立ったグラフ学習モデルとして登場した。
悪意のある攻撃者は、入力グラフデータに摂動を追加することで、予測の公平度を容易に損なうことができる。
本稿では, ELEGANT というフレームワークを提案し, GNN の公正度レベルにおける認証防御の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-11-05T20:29:40Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
性能劣化は主にトポロジと属性の矛盾に起因すると我々は主張する。
注意機構を用いて2つの視点を適応的に融合する簡易かつ効果的な手法を提案する。
我々のモデルは、実世界の不正検出データセットで最先端のベースラインを大幅に上回ることができる。
論文 参考訳(メタデータ) (2022-10-22T08:21:49Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
グラフニューラルネットワーク(GNN)は近年,急速な発展を遂げている。
GNNは個人情報をリークしたり、敵対的攻撃に弱いり、トレーニングデータから社会的バイアスを継承したり、拡大したりすることができる。
本稿では、プライバシー、堅牢性、公正性、説明可能性の計算面におけるGNNの包括的調査を行う。
論文 参考訳(メタデータ) (2022-04-18T21:41:07Z) - Improving Fraud detection via Hierarchical Attention-based Graph Neural
Network [6.7713383844867385]
不正検出のためのグラフニューラルネットワーク(HA-GNN)は、カモフラージュに対する異なる関係にわたって重み付けされた隣接行列を組み込む。
ローカル/ロングレンジ構造と元のノード特徴から情報を集約してノード埋め込みを生成する。
実世界の3つのデータセットの実験は、最先端技術に対する我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2022-02-12T16:27:16Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - Alleviating the Inconsistency Problem of Applying Graph Neural Network
to Fraud Detection [78.88163190021798]
不整合問題に対処するために、新しいGNNフレームワークである$mathsfGraphConsis$を導入します。
4つのデータセットの実証分析は、不正検出タスクにおいて不整合の問題が不可欠であることを示唆している。
我々はまた、SOTAモデルを実装したGNNベースの不正検出ツールボックスもリリースした。
論文 参考訳(メタデータ) (2020-05-01T21:43:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。