論文の概要: Text-based Localization of Moments in a Video Corpus
- arxiv url: http://arxiv.org/abs/2008.08716v2
- Date: Wed, 18 Aug 2021 23:08:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 03:42:49.878544
- Title: Text-based Localization of Moments in a Video Corpus
- Title(参考訳): ビデオコーパスにおけるモーメントのテキストベース定位
- Authors: Sudipta Paul, Niluthpol Chowdhury Mithun, and Amit K. Roy-Chowdhury
- Abstract要約: 与えられた文問合せのためのビデオコーパス内のモーメントの時間的局所化の課題に対処する。
本稿では,モーメントアライメントネットワーク(HMAN)を提案する。
HMANはビデオ内モーメント間の微妙な違いの学習に加えて、文クエリに基づくビデオ間グローバルセマンティック概念の識別にも重点を置いている。
- 参考スコア(独自算出の注目度): 38.393877654679414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior works on text-based video moment localization focus on temporally
grounding the textual query in an untrimmed video. These works assume that the
relevant video is already known and attempt to localize the moment on that
relevant video only. Different from such works, we relax this assumption and
address the task of localizing moments in a corpus of videos for a given
sentence query. This task poses a unique challenge as the system is required to
perform: (i) retrieval of the relevant video where only a segment of the video
corresponds with the queried sentence, and (ii) temporal localization of moment
in the relevant video based on sentence query. Towards overcoming this
challenge, we propose Hierarchical Moment Alignment Network (HMAN) which learns
an effective joint embedding space for moments and sentences. In addition to
learning subtle differences between intra-video moments, HMAN focuses on
distinguishing inter-video global semantic concepts based on sentence queries.
Qualitative and quantitative results on three benchmark text-based video moment
retrieval datasets - Charades-STA, DiDeMo, and ActivityNet Captions -
demonstrate that our method achieves promising performance on the proposed task
of temporal localization of moments in a corpus of videos.
- Abstract(参考訳): テキストベースのビデオモーメントのローカライズに関する作業は、テキストクエリの時間的接地に重点を置いている。
これらの作品は、関連ビデオがすでに知られていると仮定し、関連ビデオのみのモーメントをローカライズしようとする。
このような作業と異なり、この仮定を緩和し、与えられた文問合せのためのビデオコーパス内のモーメントをローカライズするタスクに対処する。
このタスクは,システムが実行するために必要な,ユニークな課題だ。
(i)ビデオのセグメントのみが質問文に対応している関連映像の検索、及び
(ii)文クエリに基づく関連映像におけるモーメントの時間的局在化
この課題を克服するために,我々は階層的モーメントアライメントネットワーク(hman)を提案する。
HMANはビデオ内モーメント間の微妙な違いの学習に加えて、文クエリに基づくビデオ間グローバルセマンティック概念の識別にも重点を置いている。
ビデオコーパス内のモーメントの時間的局所化という課題に対して,提案手法が有望な性能を達成できることを,Charades-STA,DiDeMo,ActivityNet Captionsdemonstrateという3つのベンチマークテキストベースのビデオモーメント検索データセットの質的,定量的に示す。
関連論文リスト
- Hierarchical Video-Moment Retrieval and Step-Captioning [68.4859260853096]
HiRESTは、インストラクショナルビデオデータセットから3.4Kのテキストビデオペアで構成されている。
我々の階層的ベンチマークは、ビデオ検索、モーメント検索、2つの新しいモーメントセグメンテーション、ステップキャプションタスクからなる。
論文 参考訳(メタデータ) (2023-03-29T02:33:54Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
本研究は、時間的・意味的な微粒なアライメントを可能にする、新しいテキスト-ビデオのローカライゼーション・プレテキストタスクを導入する。
具体的には、テキスト-ビデオのローカライゼーションは、テキスト記述が与えられたビデオの開始と終了の境界を予測するモーメント検索から成っている。
提案手法は,細粒度フレーム表現と単語表現を結合し,単一モードにおける異なるインスタンスの表現を暗黙的に区別する。
論文 参考訳(メタデータ) (2023-01-18T12:15:47Z) - Multi-Modal Interaction Graph Convolutional Network for Temporal
Language Localization in Videos [55.52369116870822]
本稿では,ビデオにおける時間的言語ローカライゼーションの問題に対処することに焦点を当てる。
自然言語文で記述された瞬間の始点と終点を、未編集のビデオで識別することを目的としている。
論文 参考訳(メタデータ) (2021-10-12T14:59:25Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
テキストクエリにセマンティックにマッチする長いビデオにおいて、短いセグメントを識別する方法を示す。
この問題に対処するために、粗いクリップレベルと微調整フレームレベルの両方でビデオをエンコードするHierArchical Multi-Modal EncodeR (HAMMER)を提案する。
我々は、ActivityNet CaptionsとTVRデータセット上のビデオコーパスにおけるモーメントローカライゼーションのモデルを評価するために、広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2020-11-18T02:42:36Z) - DORi: Discovering Object Relationship for Moment Localization of a
Natural-Language Query in Video [98.54696229182335]
本研究では,自然言語クエリを用いて,時間的モーメントローカライゼーションの課題について検討する。
私たちの重要なイノベーションは、言語で条件付きメッセージパッシングアルゴリズムを通じて、ビデオ機能の埋め込みを学ぶことです。
時間的なサブグラフは、時間を通してビデオ内のアクティビティをキャプチャする。
論文 参考訳(メタデータ) (2020-10-13T09:50:29Z) - Fine-grained Iterative Attention Network for TemporalLanguage
Localization in Videos [63.94898634140878]
ビデオ中の時間的言語ローカライゼーションは、与えられた文クエリに基づいて、ビデオセグメントの1つを未トリミングビデオにグラウンドすることを目的としている。
本稿では,2つのクエリ・ビデオ・インフォーム抽出のための反復的注意モジュールからなる細粒度反復注意ネットワーク(FIAN)を提案する。
本稿では,Ac-tivityNet Captions,TACoS,Charades-STAの3つのベンチマークで提案手法を評価した。
論文 参考訳(メタデータ) (2020-08-06T04:09:03Z) - Local-Global Video-Text Interactions for Temporal Grounding [77.5114709695216]
本稿では,テキストクエリに関連するビデオの時間間隔を特定することを目的とした,テキスト間時間グラウンドリングの問題に対処する。
そこで本研究では,テキストクエリにおける意味句の中間レベルの特徴の集合を抽出する,新しい回帰モデルを用いてこの問題に対処する。
提案手法は,ローカルからグローバルへのコンテキスト情報を活用することにより,目標時間間隔を効果的に予測する。
論文 参考訳(メタデータ) (2020-04-16T08:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。