A comparative study of similarity-based and GNN-based link prediction
approaches
- URL: http://arxiv.org/abs/2008.08879v1
- Date: Thu, 20 Aug 2020 10:41:53 GMT
- Title: A comparative study of similarity-based and GNN-based link prediction
approaches
- Authors: Md Kamrul Islam and Sabeur Aridhi and Malika Smail-Tabbone
- Abstract summary: The graph neural network (GNN) is able to learn hidden features from graphs which can be used for link prediction task in graphs.
This paper studies some similarity and GNN-based link prediction approaches in the domain of homogeneous graphs.
- Score: 1.0441880303257467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of inferring the missing links in a graph based on its current
structure is referred to as link prediction. Link prediction methods that are
based on pairwise node similarity are well-established approaches in the
literature. They show good prediction performance in many real-world graphs
though they are heuristics and lack of universal applicability. On the other
hand, the success of neural networks for classification tasks in various
domains leads researchers to study them in graphs. When a neural network can
operate directly on the graph, then it is termed as the graph neural network
(GNN). GNN is able to learn hidden features from graphs which can be used for
link prediction task in graphs. Link predictions based on GNNs have gained much
attention of researchers due to their convincing high performance in many
real-world graphs. This appraisal paper studies some similarity and GNN-based
link prediction approaches in the domain of homogeneous graphs that consists of
a single type of (attributed) nodes and single type of pairwise links. We
evaluate the studied approaches against several benchmark graphs with different
properties from various domains.
Related papers
- Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - How Neural Processes Improve Graph Link Prediction [35.652234989200956]
We propose a meta-learning approach with graph neural networks for link prediction: Neural Processes for Graph Neural Networks (NPGNN)
NPGNN can perform both transductive and inductive learning tasks and adapt to patterns in a large new graph after training with a small subgraph.
arXiv Detail & Related papers (2021-09-30T07:35:13Z) - Benchmarking Graph Neural Networks on Link Prediction [80.2049358846658]
We benchmark several existing graph neural network (GNN) models on different datasets for link predictions.
Our experiments show these GNN architectures perform similarly on various benchmarks for link prediction tasks.
arXiv Detail & Related papers (2021-02-24T20:57:16Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.