Benchmarking Graph Neural Networks on Link Prediction
- URL: http://arxiv.org/abs/2102.12557v1
- Date: Wed, 24 Feb 2021 20:57:16 GMT
- Title: Benchmarking Graph Neural Networks on Link Prediction
- Authors: Xing Wang, Alexander Vinel
- Abstract summary: We benchmark several existing graph neural network (GNN) models on different datasets for link predictions.
Our experiments show these GNN architectures perform similarly on various benchmarks for link prediction tasks.
- Score: 80.2049358846658
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we benchmark several existing graph neural network (GNN)
models on different datasets for link predictions. In particular, the graph
convolutional network (GCN), GraphSAGE, graph attention network (GAT) as well
as variational graph auto-encoder (VGAE) are implemented dedicated to link
prediction tasks, in-depth analysis are performed, and results from several
different papers are replicated, also a more fair and systematic comparison are
provided. Our experiments show these GNN architectures perform similarly on
various benchmarks for link prediction tasks.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - DURENDAL: Graph deep learning framework for temporal heterogeneous
networks [0.5156484100374057]
Temporal heterogeneous networks (THNs) are evolving networks that characterize many real-world applications.
We propose DURENDAL, a graph deep learning framework for THNs.
arXiv Detail & Related papers (2023-09-30T10:46:01Z) - Analysis of different temporal graph neural network configurations on
dynamic graphs [0.0]
This project aims to address the gap in the literature by performing a qualitative analysis of spatial-temporal dependence structure learning on dynamic graphs.
An extensive ablation study will be conducted on different variants of the best-performing TGN to identify the key factors contributing to its performance.
By achieving these objectives, this project will provide valuable insights into the design and optimization of TGNs for dynamic graph analysis.
arXiv Detail & Related papers (2023-05-02T00:07:33Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - A comparative study of similarity-based and GNN-based link prediction
approaches [1.0441880303257467]
The graph neural network (GNN) is able to learn hidden features from graphs which can be used for link prediction task in graphs.
This paper studies some similarity and GNN-based link prediction approaches in the domain of homogeneous graphs.
arXiv Detail & Related papers (2020-08-20T10:41:53Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.