Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning
- URL: http://arxiv.org/abs/2008.09202v1
- Date: Thu, 20 Aug 2020 20:33:56 GMT
- Title: Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning
- Authors: Justin Engelmann, Stefan Lessmann
- Abstract summary: We propose an oversampling method based on a conditional Wasserstein GAN.
We benchmark our method against standard oversampling methods and the imbalanced baseline on seven real-world datasets.
- Score: 10.051309746913512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class imbalance is a common problem in supervised learning and impedes the
predictive performance of classification models. Popular countermeasures
include oversampling the minority class. Standard methods like SMOTE rely on
finding nearest neighbours and linear interpolations which are problematic in
case of high-dimensional, complex data distributions. Generative Adversarial
Networks (GANs) have been proposed as an alternative method for generating
artificial minority examples as they can model complex distributions. However,
prior research on GAN-based oversampling does not incorporate recent
advancements from the literature on generating realistic tabular data with
GANs. Previous studies also focus on numerical variables whereas categorical
features are common in many business applications of classification methods
such as credit scoring. The paper propoes an oversampling method based on a
conditional Wasserstein GAN that can effectively model tabular datasets with
numerical and categorical variables and pays special attention to the
down-stream classification task through an auxiliary classifier loss. We
benchmark our method against standard oversampling methods and the imbalanced
baseline on seven real-world datasets. Empirical results evidence the
competitiveness of GAN-based oversampling.
Related papers
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Generative Oversampling for Imbalanced Data via Majority-Guided VAE [15.93867386081279]
We propose a novel over-sampling model, called Majority-Guided VAE(MGVAE), which generates new minority samples under the guidance of a majority-based prior.
In this way, the newly generated minority samples can inherit the diversity and richness of the majority ones, thus mitigating overfitting in downstream tasks.
arXiv Detail & Related papers (2023-02-14T06:35:23Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
We present a model based on Generative Adversarial Networks which uses additional regularization losses to map majority samples to corresponding synthetic minority samples.
We show that the proposed method improves average precision when compared to alternative re-weighting and oversampling techniques.
arXiv Detail & Related papers (2022-04-19T06:02:53Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - IB-GAN: A Unified Approach for Multivariate Time Series Classification
under Class Imbalance [1.854931308524932]
Non-parametric data augmentation with Generative Adversarial Networks (GANs) offers a promising solution.
We propose Imputation Balanced GAN (IB-GAN), a novel method that joins data augmentation and classification in a one-step process via an imputation-balancing approach.
arXiv Detail & Related papers (2021-10-14T15:31:16Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
We propose a three-player adversarial game-based end-to-end method to handle class imbalance in datasets.
Rather than adversarial minority oversampling, we propose an adversarial oversampling (AO) and a data-space oversampling (DO) approach.
The effectiveness of our proposed method has been validated with high-dimensional, highly imbalanced and large-scale multi-class datasets.
arXiv Detail & Related papers (2021-08-20T05:43:17Z) - A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios [23.257891827728827]
Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers.
We propose a novel three step technique to address imbalanced data.
arXiv Detail & Related papers (2021-03-24T09:58:02Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.