Adaptive Cluster-Based Synthetic Minority Oversampling Technique for Traffic Mode Choice Prediction with Imbalanced Dataset
- URL: http://arxiv.org/abs/2504.09486v1
- Date: Sun, 13 Apr 2025 08:58:31 GMT
- Title: Adaptive Cluster-Based Synthetic Minority Oversampling Technique for Traffic Mode Choice Prediction with Imbalanced Dataset
- Authors: Guang An Ooi, Shehab Ahmed,
- Abstract summary: Density-based spatial clustering is applied on minority classes to identify subgroups.<n>The classes in each of these subgroups are then oversampled according to the ratio of data points of their local cluster to the largest majority class.<n>When used in conjunction with machine learning models such as random forest and extreme gradient boosting, this oversampling method results in significantly higher F1 scores for the minority classes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban datasets such as citizen transportation modes often contain disproportionately distributed classes, posing significant challenges to the classification of under-represented samples using data-driven models. In the literature, various resampling methods have been developed to create synthetic data for minority classes (oversampling) or remove samples from majority classes (undersampling) to alleviate class imbalance. However, oversampling approaches tend to overgeneralize minor classes that are closely clustered and neglect sparse regions which may contain crucial information. Conversely, undersampling methods potentially remove useful information on certain subgroups. Hence, a resampling approach that takes the inherent distribution of data into consideration is required to ensure appropriate synthetic data creation. This study proposes an adaptive cluster-based synthetic minority oversampling technique. Density-based spatial clustering is applied on minority classes to identify subgroups based on their input features. The classes in each of these subgroups are then oversampled according to the ratio of data points of their local cluster to the largest majority class. When used in conjunction with machine learning models such as random forest and extreme gradient boosting, this oversampling method results in significantly higher F1 scores for the minority classes compared to other resampling techniques. These improved models provide accurate classification of transportation modes.
Related papers
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Generative Oversampling for Imbalanced Data via Majority-Guided VAE [15.93867386081279]
We propose a novel over-sampling model, called Majority-Guided VAE(MGVAE), which generates new minority samples under the guidance of a majority-based prior.
In this way, the newly generated minority samples can inherit the diversity and richness of the majority ones, thus mitigating overfitting in downstream tasks.
arXiv Detail & Related papers (2023-02-14T06:35:23Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Bias Mimicking: A Simple Sampling Approach for Bias Mitigation [57.17709477668213]
We introduce a new class-conditioned sampling method: Bias Mimicking.
Bias Mimicking improves underrepresented groups' accuracy of sampling methods by 3% over four benchmarks.
arXiv Detail & Related papers (2022-09-30T17:33:00Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
We present a model based on Generative Adversarial Networks which uses additional regularization losses to map majority samples to corresponding synthetic minority samples.
We show that the proposed method improves average precision when compared to alternative re-weighting and oversampling techniques.
arXiv Detail & Related papers (2022-04-19T06:02:53Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
We propose a three-player adversarial game-based end-to-end method to handle class imbalance in datasets.
Rather than adversarial minority oversampling, we propose an adversarial oversampling (AO) and a data-space oversampling (DO) approach.
The effectiveness of our proposed method has been validated with high-dimensional, highly imbalanced and large-scale multi-class datasets.
arXiv Detail & Related papers (2021-08-20T05:43:17Z) - A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios [23.257891827728827]
Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers.
We propose a novel three step technique to address imbalanced data.
arXiv Detail & Related papers (2021-03-24T09:58:02Z) - Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning [10.051309746913512]
We propose an oversampling method based on a conditional Wasserstein GAN.
We benchmark our method against standard oversampling methods and the imbalanced baseline on seven real-world datasets.
arXiv Detail & Related papers (2020-08-20T20:33:56Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
In most real-world scenarios, labeled training datasets are highly class-imbalanced, where deep neural networks suffer from generalizing to a balanced testing criterion.
In this paper, we explore a novel yet simple way to alleviate this issue by augmenting less-frequent classes via translating samples from more-frequent classes.
Our experimental results on a variety of class-imbalanced datasets show that the proposed method improves the generalization on minority classes significantly compared to other existing re-sampling or re-weighting methods.
arXiv Detail & Related papers (2020-04-01T13:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.