AWNet: Attentive Wavelet Network for Image ISP
- URL: http://arxiv.org/abs/2008.09228v2
- Date: Sun, 13 Sep 2020 17:38:47 GMT
- Title: AWNet: Attentive Wavelet Network for Image ISP
- Authors: Linhui Dai, Xiaohong Liu, Chengqi Li, and Jun Chen
- Abstract summary: We introduce a novel network that utilizes the attention mechanism and wavelet transform, dubbed AWNet, to tackle this learnable image ISP problem.
Our proposed method enables us to restore favorable image details from RAW information and achieve a larger receptive field.
Experimental results indicate the advances of our design in both qualitative and quantitative measurements.
- Score: 14.58067200317891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the revolutionary improvement being made on the performance of smartphones
over the last decade, mobile photography becomes one of the most common
practices among the majority of smartphone users. However, due to the limited
size of camera sensors on phone, the photographed image is still visually
distinct to the one taken by the digital single-lens reflex (DSLR) camera. To
narrow this performance gap, one is to redesign the camera image signal
processor (ISP) to improve the image quality. Owing to the rapid rise of deep
learning, recent works resort to the deep convolutional neural network (CNN) to
develop a sophisticated data-driven ISP that directly maps the phone-captured
image to the DSLR-captured one. In this paper, we introduce a novel network
that utilizes the attention mechanism and wavelet transform, dubbed AWNet, to
tackle this learnable image ISP problem. By adding the wavelet transform, our
proposed method enables us to restore favorable image details from RAW
information and achieve a larger receptive field while remaining high
efficiency in terms of computational cost. The global context block is adopted
in our method to learn the non-local color mapping for the generation of
appealing RGB images. More importantly, this block alleviates the influence of
image misalignment occurred on the provided dataset. Experimental results
indicate the advances of our design in both qualitative and quantitative
measurements. The code is available publically.
Related papers
- Simple Image Signal Processing using Global Context Guidance [56.41827271721955]
Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks.
We propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images.
Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
arXiv Detail & Related papers (2024-04-17T17:11:47Z) - Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs [53.68932498994655]
This paper introduces a novel method for unpaired learning of raw-to-raw translation across diverse cameras.
It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras.
Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques.
arXiv Detail & Related papers (2024-04-16T16:17:48Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional
Neural Network [23.451063587138393]
We propose a Raw Burst Super-Resolution Iterative Convolutional Neural Network (RBSRICNN)
The proposed network produces the final output by an iterative refinement of the intermediate SR estimates.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2021-10-25T19:01:28Z) - Del-Net: A Single-Stage Network for Mobile Camera ISP [14.168130234198467]
Traditional image signal processing (ISP) pipeline in a smartphone camera consists of several image processing steps performed sequentially to reconstruct a high quality sRGB image from the raw sensor data.
Deep learning methods using convolutional neural networks (CNN) have become popular in solving many image-related tasks such as image denoising, contrast enhancement, super resolution, deblurring, etc.
In this paper we propose DelNet - a single end-to-end deep learning model - to learn the entire ISP pipeline within reasonable complexity for smartphone deployment.
arXiv Detail & Related papers (2021-08-03T16:51:11Z) - Beyond Joint Demosaicking and Denoising: An Image Processing Pipeline
for a Pixel-bin Image Sensor [0.883717274344425]
Pixel binning is considered one of the most prominent solutions to tackle the hardware limitation of smartphone cameras.
In this paper, we tackle the challenges of joint demosaicing and denoising (JDD) on such an image sensor by introducing a novel learning-based method.
The proposed method is guided by a multi-term objective function, including two novel perceptual losses to produce visually plausible images.
arXiv Detail & Related papers (2021-04-19T15:41:28Z) - Exploiting Raw Images for Real-Scene Super-Resolution [105.18021110372133]
We study the problem of real-scene single image super-resolution to bridge the gap between synthetic data and real captured images.
We propose a method to generate more realistic training data by mimicking the imaging process of digital cameras.
We also develop a two-branch convolutional neural network to exploit the radiance information originally-recorded in raw images.
arXiv Detail & Related papers (2021-02-02T16:10:15Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Replacing Mobile Camera ISP with a Single Deep Learning Model [171.49776472948957]
PyNET is a novel pyramidal CNN architecture designed for fine-grained image restoration.
The model is trained to convert RAW Bayer data obtained directly from mobile camera sensor into photos captured with a professional high-end DSLR camera.
arXiv Detail & Related papers (2020-02-13T14:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.