Defending Regression Learners Against Poisoning Attacks
- URL: http://arxiv.org/abs/2008.09279v1
- Date: Fri, 21 Aug 2020 03:02:58 GMT
- Title: Defending Regression Learners Against Poisoning Attacks
- Authors: Sandamal Weerasinghe, Sarah M. Erfani, Tansu Alpcan, Christopher
Leckie, Justin Kopacz
- Abstract summary: We introduce a novel Local Intrinsic Dimensionality (LID) based measure called N-LID that measures the local deviation of a given data point's LID with respect to its neighbors.
N-LID can distinguish poisoned samples from normal samples and propose an N-LID based defense approach that makes no assumptions of the attacker.
We show that the proposed defense mechanism outperforms the state of the art defenses in terms of prediction accuracy (up to 76% lower MSE compared to an undefended ridge model) and running time.
- Score: 25.06658793731661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regression models, which are widely used from engineering applications to
financial forecasting, are vulnerable to targeted malicious attacks such as
training data poisoning, through which adversaries can manipulate their
predictions. Previous works that attempt to address this problem rely on
assumptions about the nature of the attack/attacker or overestimate the
knowledge of the learner, making them impractical. We introduce a novel Local
Intrinsic Dimensionality (LID) based measure called N-LID that measures the
local deviation of a given data point's LID with respect to its neighbors. We
then show that N-LID can distinguish poisoned samples from normal samples and
propose an N-LID based defense approach that makes no assumptions of the
attacker. Through extensive numerical experiments with benchmark datasets, we
show that the proposed defense mechanism outperforms the state of the art
defenses in terms of prediction accuracy (up to 76% lower MSE compared to an
undefended ridge model) and running time.
Related papers
- Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
We advocate MDP, a lightweight, pluggable, and effective defense for PLMs as few-shot learners.
We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness.
arXiv Detail & Related papers (2023-09-23T04:41:55Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
This work focuses on a different adversarial scenario in which the attacker is still interested in manipulating the uncertainty estimate.
In particular, the goal is to undermine the use of machine-learning models when their outputs are consumed by a downstream module or by a human operator.
arXiv Detail & Related papers (2023-09-19T12:54:09Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
Attacks on deep learning models with malicious training samples are known as data poisoning.
Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving certified poisoning robustness.
Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness.
arXiv Detail & Related papers (2023-06-28T17:59:35Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
We propose a novel adversarial backdoor attack against trajectory prediction models.
Our attack affects the victim at training time via naturalistic, hence stealthy, poisoned samples crafted using a novel two-step approach.
We show that the proposed attack is highly effective, as it can significantly hinder the performance of prediction models.
arXiv Detail & Related papers (2023-06-27T19:15:06Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Adversarial Attack Based on Prediction-Correction [8.467466998915018]
Deep neural networks (DNNs) are vulnerable to adversarial examples obtained by adding small perturbations to original examples.
In this paper, a new prediction-correction (PC) based adversarial attack is proposed.
In our proposed PC-based attack, some existing attack can be selected to produce a predicted example first, and then the predicted example and the current example are combined together to determine the added perturbations.
arXiv Detail & Related papers (2023-06-02T03:11:32Z) - Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks [31.339252233416477]
We introduce the notion of model poisoning reachability as a technical tool to explore the intrinsic limits of data poisoning attacks towards target parameters.
We derive an easily computable threshold to establish and quantify a surprising phase transition phenomenon among popular ML models.
Our work highlights the critical role played by the poisoning ratio, and sheds new insights on existing empirical results, attacks and mitigation strategies in data poisoning.
arXiv Detail & Related papers (2023-03-07T01:55:26Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
Data poisoning considers cases when an adversary manipulates the behavior of machine learning algorithms through malicious training data.
We propose a temporal threat model of data poisoning with two novel metrics, earliness and duration, which respectively measure how long an attack started in advance and how long an attack lasted.
arXiv Detail & Related papers (2023-02-07T18:59:19Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
Federated learning (FL) provides autonomy and privacy by design to participating peers.
The label-flipping (LF) attack is a targeted poisoning attack where the attackers poison their training data by flipping the labels of some examples.
We propose a novel defense that first dynamically extracts those gradients from the peers' local updates.
arXiv Detail & Related papers (2022-07-05T12:02:54Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.