Adversarial Attack Based on Prediction-Correction
- URL: http://arxiv.org/abs/2306.01809v1
- Date: Fri, 2 Jun 2023 03:11:32 GMT
- Title: Adversarial Attack Based on Prediction-Correction
- Authors: Chen Wan, Fangjun Huang
- Abstract summary: Deep neural networks (DNNs) are vulnerable to adversarial examples obtained by adding small perturbations to original examples.
In this paper, a new prediction-correction (PC) based adversarial attack is proposed.
In our proposed PC-based attack, some existing attack can be selected to produce a predicted example first, and then the predicted example and the current example are combined together to determine the added perturbations.
- Score: 8.467466998915018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are vulnerable to adversarial examples obtained
by adding small perturbations to original examples. The added perturbations in
existing attacks are mainly determined by the gradient of the loss function
with respect to the inputs. In this paper, the close relationship between
gradient-based attacks and the numerical methods for solving ordinary
differential equation (ODE) is studied for the first time. Inspired by the
numerical solution of ODE, a new prediction-correction (PC) based adversarial
attack is proposed. In our proposed PC-based attack, some existing attack can
be selected to produce a predicted example first, and then the predicted
example and the current example are combined together to determine the added
perturbations. The proposed method possesses good extensibility and can be
applied to all available gradient-based attacks easily. Extensive experiments
demonstrate that compared with the state-of-the-art gradient-based adversarial
attacks, our proposed PC-based attacks have higher attack success rates, and
exhibit better transferability.
Related papers
- DTA: Distribution Transform-based Attack for Query-Limited Scenario [11.874670564015789]
In generating adversarial examples, the conventional black-box attack methods rely on sufficient feedback from the to-be-attacked models.
This paper proposes a hard-label attack that simulates an attacked action being permitted to conduct a limited number of queries.
Experiments validate the effectiveness of the proposed idea and the superiority of DTA over the state-of-the-art.
arXiv Detail & Related papers (2023-12-12T13:21:03Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Towards Reasonable Budget Allocation in Untargeted Graph Structure
Attacks via Gradient Debias [50.628150015907565]
Cross-entropy loss function is used to evaluate perturbation schemes in classification tasks.
Previous methods use negative cross-entropy loss as the attack objective in attacking node-level classification models.
This paper argues about the previous unreasonable attack objective from the perspective of budget allocation.
arXiv Detail & Related papers (2023-03-29T13:02:02Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
We study a novel attack paradigm, which modifies model parameters in the deployment stage.
Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack.
We present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA)
arXiv Detail & Related papers (2022-07-25T03:24:58Z) - Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability [20.255708227671573]
Black-box adversarial attacks can be transferred from one model to another.
In this work, we propose a novel ensemble attack method called the variance reduced ensemble attack.
Empirical results on the standard ImageNet demonstrate that the proposed method could boost the adversarial transferability and outperforms existing ensemble attacks significantly.
arXiv Detail & Related papers (2021-11-21T06:33:27Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
Deep neural networks (DNNs) are vulnerable to adversarial noise.
adversarial robustness can be improved by exploiting adversarial examples.
Models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples.
arXiv Detail & Related papers (2021-06-09T12:49:54Z) - Improving the Transferability of Adversarial Examples with New Iteration
Framework and Input Dropout [8.24029748310858]
We propose a new gradient iteration framework, which redefines the relationship between the iteration step size, the number of perturbations, and the maximum iterations.
Under this framework, we easily improve the attack success rate of DI-TI-MIM.
In addition, we propose a gradient iterative attack method based on input dropout, which can be well combined with our framework.
arXiv Detail & Related papers (2021-06-03T06:36:38Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Defending Regression Learners Against Poisoning Attacks [25.06658793731661]
We introduce a novel Local Intrinsic Dimensionality (LID) based measure called N-LID that measures the local deviation of a given data point's LID with respect to its neighbors.
N-LID can distinguish poisoned samples from normal samples and propose an N-LID based defense approach that makes no assumptions of the attacker.
We show that the proposed defense mechanism outperforms the state of the art defenses in terms of prediction accuracy (up to 76% lower MSE compared to an undefended ridge model) and running time.
arXiv Detail & Related papers (2020-08-21T03:02:58Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) is a framework that models the crafting of adversarial examples.
AEG provides a new way to design adversarial examples by adversarially training a generator and aversa from a given hypothesis class.
We demonstrate the efficacy of AEG on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2020-07-01T19:47:23Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.