Doubly Stochastic Variational Inference for Neural Processes with
Hierarchical Latent Variables
- URL: http://arxiv.org/abs/2008.09469v2
- Date: Fri, 30 Oct 2020 23:05:15 GMT
- Title: Doubly Stochastic Variational Inference for Neural Processes with
Hierarchical Latent Variables
- Authors: Qi Wang, Herke van Hoof
- Abstract summary: We present a new variant of Neural Process (NP) model that we call Doubly Variational Neural Process (DSVNP)
This model combines the global latent variable and local latent variables for prediction. We evaluate this model in several experiments, and our results demonstrate competitive prediction performance in multi-output regression and uncertainty estimation in classification.
- Score: 37.43541345780632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural processes (NPs) constitute a family of variational approximate models
for stochastic processes with promising properties in computational efficiency
and uncertainty quantification. These processes use neural networks with latent
variable inputs to induce predictive distributions. However, the expressiveness
of vanilla NPs is limited as they only use a global latent variable, while
target specific local variation may be crucial sometimes. To address this
challenge, we investigate NPs systematically and present a new variant of NP
model that we call Doubly Stochastic Variational Neural Process (DSVNP). This
model combines the global latent variable and local latent variables for
prediction. We evaluate this model in several experiments, and our results
demonstrate competitive prediction performance in multi-output regression and
uncertainty estimation in classification.
Related papers
- Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.
Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning [12.947265104477237]
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning.
The proposed Focused Adversial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach.
It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition.
arXiv Detail & Related papers (2024-05-07T23:37:40Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
We introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models.
Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity.
arXiv Detail & Related papers (2023-12-30T07:40:47Z) - Adaptive Conditional Quantile Neural Processes [9.066817971329899]
Conditional Quantile Neural Processes (CQNPs) are a new member of the neural processes family.
We introduce an extension of quantile regression where the model learns to focus on estimating informative quantiles.
Experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance.
arXiv Detail & Related papers (2023-05-30T06:19:19Z) - Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
Sequence Modeling [26.377099481072992]
We propose Transformer Neural Processes (TNPs) for uncertainty-aware meta learning.
We learn TNPs via an autoregressive likelihood-based objective and instantiate it with a novel transformer-based architecture.
We show that TNPs achieve state-of-the-art performance on various benchmark problems.
arXiv Detail & Related papers (2022-07-09T02:28:58Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.