Beyond Individual and Group Fairness
- URL: http://arxiv.org/abs/2008.09490v1
- Date: Fri, 21 Aug 2020 14:14:44 GMT
- Title: Beyond Individual and Group Fairness
- Authors: Pranjal Awasthi, Corinna Cortes, Yishay Mansour, Mehryar Mohri
- Abstract summary: We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
- Score: 90.4666341812857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new data-driven model of fairness that, unlike existing static
definitions of individual or group fairness is guided by the unfairness
complaints received by the system. Our model supports multiple fairness
criteria and takes into account their potential incompatibilities. We consider
both a stochastic and an adversarial setting of our model. In the stochastic
setting, we show that our framework can be naturally cast as a Markov Decision
Process with stochastic losses, for which we give efficient vanishing regret
algorithmic solutions. In the adversarial setting, we design efficient
algorithms with competitive ratio guarantees. We also report the results of
experiments with our algorithms and the stochastic framework on artificial
datasets, to demonstrate their effectiveness empirically.
Related papers
- DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Towards Threshold Invariant Fair Classification [10.317169065327546]
This paper introduces the notion of threshold invariant fairness, which enforces equitable performances across different groups independent of the decision threshold.
Experimental results demonstrate that the proposed methodology is effective to alleviate the threshold sensitivity in machine learning models designed to achieve fairness.
arXiv Detail & Related papers (2020-06-18T16:49:46Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
We show that giving the same importance to groups of different sizes and distributions, to counteract the effect of bias in training data, can be in conflict with robustness.
An adversary who can control sampling or labeling for a fraction of training data, can reduce the test accuracy significantly beyond what he can achieve on unconstrained models.
We analyze the robustness of fair machine learning through an empirical evaluation of attacks on multiple algorithms and benchmark datasets.
arXiv Detail & Related papers (2020-06-15T18:17:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.