Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology
- URL: http://arxiv.org/abs/2008.09670v1
- Date: Fri, 21 Aug 2020 20:22:55 GMT
- Title: Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology
- Authors: Anna Solovyova, Sergiy Danylov, Shpenkov Oleksii, Aleksandr Kravchenko
- Abstract summary: Lack of money, absence of qualified specialists, and low level of trust to the correction methods are the main issues that affect the in-time diagnoses of ASD.
Our team developed the algorithm that will be able to predict the chances of ASD according to the information from the gaze activity of the child.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the number of children with diagnosed autism spectrum disorder (ASD)
continues to rise from year to year, there is still no universal approach to
autism diagnosis and treatment. A great variety of different tools and
approaches for the on-site diagnostic are available right now, however, a big
percent of parents have no access to them and they tend to search for the
available tools and correction programs on the Internet. Lack of money, absence
of qualified specialists, and low level of trust to the correction methods are
the main issues that affect the in-time diagnoses of ASD and which need to be
solved to get the early treatment for the little patients. Understanding the
importance of this issue our team decided to investigate new methods of the
online autism diagnoses and develop the algorithm that will be able to predict
the chances of ASD according to the information from the gaze activity of the
child. The results that we got during the experiments show supported our idea
that eye-tracking technology is one of the most promising tools for the early
detection of the eye-movement features that can be markers of the ASD.
Moreover, we have conducted a series of experiments to ensure that our approach
has a reliable result on the cheap webcam systems. Thus, this approach can be
used as an additional first screening tool for the home monitoring of the early
child development and ASD connected disorders monitoring. The further
development of eye-tracking based autism diagnosis has a big potential of usage
and can be further implemented in the daily practice for practical specialists
and parents.
Related papers
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Localizing Moments of Actions in Untrimmed Videos of Infants with Autism Spectrum Disorder [5.2289135066938375]
We introduce a self-attention based TAL model designed to identify ASD-related behaviors in infant videos.
This study is the first to conduct end-to-end temporal action localization in untrimmed videos of infants with ASD.
We achieve 70% accuracy for look face, 79% accuracy for look object, 72% for smile and 65% for vocalization.
arXiv Detail & Related papers (2024-04-08T20:31:27Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Accurate Autism Spectrum Disorder prediction using Support Vector
Classifier based on Federated Learning (SVCFL) [0.0]
We have achieved 99% accuracy for predicting autism spectrum disorder and we have achieved 13% improvement in the results.
In this article, we have achieved 99% accuracy for predicting autism spectrum disorder and we have achieved 13% improvement in the results.
arXiv Detail & Related papers (2023-11-08T11:14:29Z) - Early Autism Diagnosis based on Path Signature and Siamese Unsupervised Feature Compressor [15.39635888144281]
We resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis.
Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance.
arXiv Detail & Related papers (2023-07-12T22:08:22Z) - Evaluate underdiagnosis and overdiagnosis bias of deep learning model on
primary open-angle glaucoma diagnosis in under-served patient populations [64.91773761529183]
Primary open-angle glaucoma (POAG) is the leading cause of blindness in the United States.
Deep learning has been widely used to detect POAG using fundus images.
Human bias in clinical diagnosis may be reflected and amplified in the widely-used deep learning models.
arXiv Detail & Related papers (2023-01-26T18:53:09Z) - Development of an autism screening classification model for toddlers [0.0]
Autism spectrum disorder ASD is a neurodevelopmental disorder associated with challenges in communication, social interaction, and repetitive behaviors.
This work contributes to the early screening of toddlers by helping identify those who have ASD traits and should pursue formal clinical diagnosis.
arXiv Detail & Related papers (2021-09-29T09:07:39Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Smartphone-based System for Real-time Early Childhood Caries Diagnosis [76.71303610807156]
Early childhood caries (ECC) is the most common, yet preventable chronic disease in children under the age of 6.
In this study, we propose a multistage deep learning-based system for cavity detection.
We integrate the deep learning system into an easy-to-use mobile application that can diagnose ECC from an early stage and provide real-time results to untrained users.
arXiv Detail & Related papers (2020-08-17T21:11:19Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
We propose a convolutional neural network (CNN) algorithm for gaze prediction using images extracted from a one-minute stimulus video.
Our model achieved a high accuracy rate and robustness for prediction of gaze direction with independent persons.
arXiv Detail & Related papers (2020-07-28T18:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.