A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis
- URL: http://arxiv.org/abs/2405.13082v2
- Date: Thu, 18 Jul 2024 09:12:08 GMT
- Title: A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis
- Authors: Haocong Rao, Minlin Zeng, Xuejiao Zhao, Chunyan Miao,
- Abstract summary: neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
- Score: 51.07114445705692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed an increasing global population affected by neurodegenerative diseases (NDs), which traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring. As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs. The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification, opening a new avenue to facilitate faster and more cost-effective diagnosis of NDs. In this paper, we provide a comprehensive survey on recent progress of machine learning and deep learning based AI techniques applied to diagnosis of five typical NDs through gait. We provide an overview of the process of AI-assisted NDs diagnosis, and present a systematic taxonomy of existing gait data and AI models. Meanwhile, a novel quality evaluation criterion is proposed to quantitatively assess the quality of existing studies. Through an extensive review and analysis of 164 studies, we identify and discuss the challenges, potential solutions, and future directions in this field. Finally, we envision the prospective utilization of 3D skeleton data for human gait representation and the development of more efficient AI models for NDs diagnosis. We provide a public resource repository to track and facilitate developments in this emerging field: https://github.com/Kali-Hac/AI4NDD-Survey.
Related papers
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - Automatic Medical Report Generation: Methods and Applications [22.203961518077158]
This review comprehensively examines AMRG methods from 2021 to 2024.
It (i) presents solutions to primary challenges in this field, (ii) explores AMRG applications across various imaging modalities, (iii) introduces publicly available datasets, (iv) outlines evaluation metrics, (v) identifies techniques that significantly enhance model performance, and (vi) discusses unresolved issues and potential future research directions.
arXiv Detail & Related papers (2024-08-26T03:02:41Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers -- A narrative review of a growing field [0.0]
Single-modality studies using structural MRI and PET imaging have demonstrated high accuracy in classifying AD.
Multi-modality studies, integrating multiple neuroimaging techniques and biomarkers, have shown improved performance and robustness.
challenges remain in data standardization, model interpretability, generalizability, clinical integration, and ethical considerations.
arXiv Detail & Related papers (2024-06-25T09:22:53Z) - Current and future roles of artificial intelligence in retinopathy of
prematurity [14.333209377077058]
Retinopathy of prematurity (ROP) is a severe condition affecting premature infants.
Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs) have significantly improved ROP detection and classification.
The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential.
arXiv Detail & Related papers (2024-02-15T14:35:02Z) - The Limits of Fair Medical Imaging AI In The Wild [43.97266228706059]
We investigate the extent to which medical AI utilizes demographic encodings.
We confirm that medical imaging AI leverages demographic shortcuts in disease classification.
We find that models with less encoding of demographic attributes are often most "globally optimal"
arXiv Detail & Related papers (2023-12-11T18:59:50Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - GENIE-NF-AI: Identifying Neurofibromatosis Tumors using Liquid Neural
Network (LTC) trained on AACR GENIE Datasets [0.0]
We propose an interpretable AI approach to diagnose patients with neurofibromatosis.
Our proposed approach outperformed existing models with 99.86% accuracy.
arXiv Detail & Related papers (2023-04-26T10:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.