論文の概要: Team DoNotDistribute at SemEval-2020 Task 11: Features, Finetuning, and
Data Augmentation in Neural Models for Propaganda Detection in News Articles
- arxiv url: http://arxiv.org/abs/2008.09703v1
- Date: Fri, 21 Aug 2020 22:35:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 21:37:24.034451
- Title: Team DoNotDistribute at SemEval-2020 Task 11: Features, Finetuning, and
Data Augmentation in Neural Models for Propaganda Detection in News Articles
- Title(参考訳): チームDoNotDistribute at SemEval-2020 Task 11:Features, Finetuning, and Data Augmentation in Neural Models for Propaganda Detection in News Articles
- Authors: Michael Kranzlein, Shabnam Behzad, Nazli Goharian
- Abstract要約: 本稿では,SemEval 2020 Shared Task 11: Detection of Propaganda Techniques in News Articlesについて述べる。
本研究は,スパン識別と技術分類の両方のサブタスクに参加し,さまざまなBERTモデルと手作り特徴を用いた実験について報告する。
- 参考スコア(独自算出の注目度): 13.339333273943843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents our systems for SemEval 2020 Shared Task 11: Detection of
Propaganda Techniques in News Articles. We participate in both the span
identification and technique classification subtasks and report on experiments
using different BERT-based models along with handcrafted features. Our models
perform well above the baselines for both tasks, and we contribute ablation
studies and discussion of our results to dissect the effectiveness of different
features and techniques with the goal of aiding future studies in propaganda
detection.
- Abstract(参考訳): 本稿では,SemEval 2020 Shared Task 11: Detection of Propaganda Techniques in News Articlesについて述べる。
本研究は,スパン識別と技術分類の両方のサブタスクに参加し,さまざまなBERTモデルと手作り特徴を用いた実験について報告する。
プロパガンダ検出における今後の研究を支援することを目的として,提案モデルが両タスクのベースラインをはるかに上回って動作し,異なる特徴や手法の有効性を解析するために,アブレーション研究や研究結果の議論に寄与する。
関連論文リスト
- SmurfCat at SemEval-2024 Task 6: Leveraging Synthetic Data for Hallucination Detection [51.99159169107426]
本稿では,SemEval-2024幻覚検出タスクのための新しいシステムを提案する。
我々の調査は、モデル予測と基準基準を比較するための様々な戦略にまたがっている。
強力なパフォーマンス指標を示す3つの異なる方法を紹介します。
論文 参考訳(メタデータ) (2024-04-09T09:03:44Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - RoBLEURT Submission for the WMT2021 Metrics Task [72.26898579202076]
本稿では,共有メトリクスタスクであるRoBLEURTについて紹介する。
我々のモデルは10対の英語言語対のうち8対でWMT 2020の人間のアノテーションと最先端の相関に達する。
論文 参考訳(メタデータ) (2022-04-28T08:49:40Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
我々は、GPT-2を用いて、分類性能を向上させるために、人工訓練インスタンスを生成する。
実験の結果,少数のラベルインスタンスでGPT-2を微調整すると,一貫した分類精度が向上することがわかった。
論文 参考訳(メタデータ) (2021-11-17T12:10:03Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Solomon at SemEval-2020 Task 11: Ensemble Architecture for Fine-Tuned
Propaganda Detection in News Articles [0.3232625980782302]
本稿では,第11節「新聞記事におけるプロパガンダ技術の検出」に参画したシステム(ソロモン)の詳細と成果について述べる。
プロパガンダデータセットの微調整にRoBERTaベースのトランスフォーマーアーキテクチャを使用した。
他の参加システムと比較して、私たちの応募はリーダーボードで4位です。
論文 参考訳(メタデータ) (2020-09-16T05:00:40Z) - SemEval-2020 Task 11: Detection of Propaganda Techniques in News
Articles [0.6999740786886536]
本稿では,新聞記事中のプロパガンダ技術の検出に関するSemEval-2020 Task 11の結果を紹介する。
このタスクには、スパン識別と技術分類という2つのサブタスクがあった。
両方のサブタスクでは、最高のシステムはトレーニング済みのトランスフォーマーとアンサンブルを使用していた。
論文 参考訳(メタデータ) (2020-09-06T10:05:43Z) - DUTH at SemEval-2020 Task 11: BERT with Entity Mapping for Propaganda
Classification [1.5469452301122173]
本報告では,SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articlesに参加するために,Democritus University of Thrace(DUTH)チームが採用した手法について述べる。
論文 参考訳(メタデータ) (2020-08-22T18:18:02Z) - LTIatCMU at SemEval-2020 Task 11: Incorporating Multi-Level Features for
Multi-Granular Propaganda Span Identification [70.1903083747775]
本稿では,新聞記事におけるプロパガンダ・スパン識別の課題について述べる。
本稿では,BERT-BiLSTMに基づくプロパガンダ分類モデルを提案する。
論文 参考訳(メタデータ) (2020-08-11T16:14:47Z) - newsSweeper at SemEval-2020 Task 11: Context-Aware Rich Feature
Representations For Propaganda Classification [2.0491741153610334]
本稿では,SemEval 2020 Task 11: Detection of Propaganda Techniques in News Articlesについて述べる。
我々は、名前付きエンティティ認識タスクのために開発されたタグ付け技術により、事前訓練されたBERT言語モデルを活用している。
第2のサブタスクでは,プロパガンダ手法の分類のために,事前学習したRoBERTaモデルにコンテキスト特徴を組み込む。
論文 参考訳(メタデータ) (2020-07-21T14:06:59Z) - BPGC at SemEval-2020 Task 11: Propaganda Detection in News Articles with
Multi-Granularity Knowledge Sharing and Linguistic Features based Ensemble
Learning [2.8913142991383114]
SemEval 2020 Task-11はニュースプロパガンダ検出のための自動システムの設計を目的としている。
Task-11 は2つのサブタスク、すなわち Span Identification と Technique Classification から構成される。
論文 参考訳(メタデータ) (2020-05-31T19:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。