A variational quantum algorithm for Hamiltonian diagonalization
- URL: http://arxiv.org/abs/2008.09854v3
- Date: Thu, 8 Apr 2021 03:23:27 GMT
- Title: A variational quantum algorithm for Hamiltonian diagonalization
- Authors: Jinfeng Zeng, Chenfeng Cao, Chao Zhang, Pengxiang Xu, Bei Zeng
- Abstract summary: We propose a variational algorithm for Hamiltonians diagonalization (VQHD) of quantum systems.
The thermal states of the system encode the information of eigenvalues and eigenstates of the system Hamiltonian.
Our VQHD algorithm sheds new light on the applications of near-term quantum computers.
- Score: 5.207748672230163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hamiltonian diagonalization is at the heart of understanding physical
properties and practical applications of quantum systems. It is highly desired
to design quantum algorithms that can speedup Hamiltonian diagonalization,
especially those can be implemented on near-term quantum devices. In this work,
we propose a variational algorithm for Hamiltonians diagonalization (VQHD) of
quantum systems, which explores the important physical properties, such as
temperature, locality and correlation, of the system. The key idea is that the
thermal states of the system encode the information of eigenvalues and
eigenstates of the system Hamiltonian. To obtain the full spectrum of the
Hamiltonian, we use a quantum imaginary time evolution algorithm with high
temperature, which prepares a thermal state with a small correlation length.
With Trotterization, this then allows us to implement each step of imaginary
time evolution by a local unitary transformation on only a small number of
sites. Diagonalizing these thermal states hence leads to a full knowledge of
the Hamiltonian eigensystem. We apply our algorithm to diagonalize local
Hamiltonians and return results with high precision. Our VQHD algorithm sheds
new light on the applications of near-term quantum computers.
Related papers
- Generating Approximate Ground States of Strongly Correlated Quantum Many-Body Systems Through Quantum Imaginary Time Evolution [0.0]
We numerically study the capabilities of the QITE algorithm in approximating the ITE of lattice and molecular electronic structure Hamiltonians.
We show how imaginary time evolved fermionic Gaussian states can serve as initial states which can be efficiently computed on classical computers.
arXiv Detail & Related papers (2024-09-02T15:20:41Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Variance minimisation on a quantum computer for nuclear structure [0.0]
We present a variance based method of finding the excited state spectrum of a small nuclear system using a quantum computer.
Our aim is to develop quantum computing algorithms which can reproduce and predict nuclear structure.
arXiv Detail & Related papers (2022-09-16T09:38:07Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Inverse iteration quantum eigensolvers assisted with a continuous
variable [0.0]
We propose inverse iteration quantum eigensolvers, which exploit the power of quantum computing for the classical inverse power iteration method.
A key ingredient is constructing an inverse Hamiltonian as a linear combination of coherent Hamiltonian evolution.
We demonstrate the quantum algorithm with numerical simulations under finite squeezing for various physical systems.
arXiv Detail & Related papers (2020-10-07T07:31:11Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
We present a process for obtaining the eigenenergy spectrum of electronic quantum systems.
This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space.
A process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given.
arXiv Detail & Related papers (2020-08-26T02:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.