論文の概要: CyberWallE at SemEval-2020 Task 11: An Analysis of Feature Engineering
for Ensemble Models for Propaganda Detection
- arxiv url: http://arxiv.org/abs/2008.09859v1
- Date: Sat, 22 Aug 2020 15:51:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 07:48:34.968397
- Title: CyberWallE at SemEval-2020 Task 11: An Analysis of Feature Engineering
for Ensemble Models for Propaganda Detection
- Title(参考訳): SemEval-2020 Task 11におけるCyberWallE: プロパガンダ検出のためのアンサンブルモデルの特徴解析
- Authors: Verena Blaschke, Maxim Korniyenko, Sam Tureski
- Abstract要約: Span Identification subtask ではバイLSTMアーキテクチャを使用し、Technical Classification subtask の複雑なアンサンブルモデルを訓練する。
我々のシステムは、SIサブタスクで35チーム中8チーム、TCサブタスクで31チーム中8チームを達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes our participation in the SemEval-2020 task Detection of
Propaganda Techniques in News Articles. We participate in both subtasks: Span
Identification (SI) and Technique Classification (TC). We use a bi-LSTM
architecture in the SI subtask and train a complex ensemble model for the TC
subtask. Our architectures are built using embeddings from BERT in combination
with additional lexical features and extensive label post-processing. Our
systems achieve a rank of 8 out of 35 teams in the SI subtask (F1-score:
43.86%) and 8 out of 31 teams in the TC subtask (F1-score: 57.37%).
- Abstract(参考訳): 本稿では,SemEval-2020 Task Detection of Propaganda Techniques in News Articlesについて述べる。
Span Identification (SI) と Technique Classification (TC) の2つのサブタスクに参加している。
我々はSIサブタスクにバイLSTMアーキテクチャを使用し、TCサブタスクの複雑なアンサンブルモデルを訓練する。
我々のアーキテクチャはBERTからの埋め込みと、追加の語彙的特徴と広範なラベル後処理を組み合わせて構築されている。
我々のシステムは、SIサブタスクで35チーム中8チーム(F1スコア:43.86%)、TCサブタスクで31チーム中8チーム(F1スコア:57.37%)を達成している。
関連論文リスト
- SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection [68.858931667807]
Subtask Aは、テキストが人間によって書かれたか、機械によって生成されたかを決定するバイナリ分類タスクである。
サブタスクBは、テキストの正確なソースを検出し、それが人間によって書かれたか、特定のLCMによって生成されたかを認識する。
Subtask Cは、著者が人間から機械へ遷移するテキスト内の変化点を特定することを目的としている。
論文 参考訳(メタデータ) (2024-04-22T13:56:07Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
モジュラー設計は、ニューラルネットワークが様々な知識の面をアンタングルして再結合し、新しいタスクにより系統的に一般化することを奨励する。
この研究では、各タスクは(潜在的に小さな)インベントリから潜在的な離散スキルのサブセットと関連付けられていると仮定する。
ネットワークのモジュラー設計により、強化学習におけるサンプル効率が著しく向上し、教師あり学習における数ショットの一般化が図られる。
論文 参考訳(メタデータ) (2022-02-28T16:07:19Z) - SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning [47.49596196559958]
本稿では,SemEval-2021共有タスクについて紹介する。4: Reading of Abstract Meaning (ReCAM)。
パスとそれに対応する質問が与えられた場合、参加者システムは、抽象概念の5つの候補から正しい回答を選択することが期待される。
Subtask 1は、物理的な世界で直接認識できない概念を、システムがいかにうまくモデル化できるかを評価することを目的としている。
Subtask 2は、ハイパーニム階層にある非特異な概念を解釈するモデルの能力に焦点を当てている。
Subtask 3は、2種類の抽象性に対するモデルの一般化可能性に関する洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2021-05-31T11:04:17Z) - TechTexC: Classification of Technical Texts using Convolution and
Bidirectional Long Short Term Memory Network [0.0]
3つの手法を用いて分類処理を行うための分類システム(TechTexC)を開発した。
その結果,BiLSTMモデルを用いたCNNは,サブタスク (a,b,c,g) とタスク-2aのタスク-1に関する他の手法よりも優れていた。
テストセットの場合、cnnとbilstmの併用により、サブタスク1a (70.76%), 1b (79.97%), 1c (65.45%), 1g (49.23%), 2a (70.14%) の精度が向上した。
論文 参考訳(メタデータ) (2020-12-21T15:22:47Z) - Solomon at SemEval-2020 Task 11: Ensemble Architecture for Fine-Tuned
Propaganda Detection in News Articles [0.3232625980782302]
本稿では,第11節「新聞記事におけるプロパガンダ技術の検出」に参画したシステム(ソロモン)の詳細と成果について述べる。
プロパガンダデータセットの微調整にRoBERTaベースのトランスフォーマーアーキテクチャを使用した。
他の参加システムと比較して、私たちの応募はリーダーボードで4位です。
論文 参考訳(メタデータ) (2020-09-16T05:00:40Z) - YNU-HPCC at SemEval-2020 Task 11: LSTM Network for Detection of
Propaganda Techniques in News Articles [5.352512345142247]
本稿では,SemEval-2020タスク11におけるニュース記事のプロパガンダ検出手法について概説する。
本稿では,GloVe単語表現,BERT事前学習モデル,LSTMモデルアーキテクチャを実装した。
本手法は, テストセットにおいて, SIおよびTCサブタスクのランクが17位, 22位, それぞれ有意に向上した。
論文 参考訳(メタデータ) (2020-08-24T02:42:12Z) - syrapropa at SemEval-2020 Task 11: BERT-based Models Design For
Propagandistic Technique and Span Detection [2.0051855303186046]
まず,SpanBERTに基づくSpan Identification(SI)モデルを構築し,より深いモデルと文レベルの表現による検出を容易にする。
次に、テクニック分類(TC)のためのハイブリッドモデルを開発する。
ハイブリッドモデルは、2つのBERTモデルと異なるトレーニング方法、特徴ベースのロジスティック回帰モデルを含む3つのサブモデルで構成されている。
論文 参考訳(メタデータ) (2020-08-24T02:15:29Z) - aschern at SemEval-2020 Task 11: It Takes Three to Tango: RoBERTa, CRF,
and Transfer Learning [22.90521056447551]
本稿では,新聞記事中のプロパガンダ技術の検出に関するSemEval-2020 Task 11について述べる。
我々は,RoBERTaベースのニューラルネットワーク,追加のCRFレイヤ,2つのサブタスク間の伝達学習,タスクのマルチラベル特性を扱うための高度な後処理を用いたアンサンブルモデルを開発した。
論文 参考訳(メタデータ) (2020-08-06T18:45:25Z) - Device-Robust Acoustic Scene Classification Based on Two-Stage
Categorization and Data Augmentation [63.98724740606457]
我々は,GT,USTC,Tencent,UKEの4つのグループからなる共同で,DCASE 2020 Challengeの第1タスク - 音響シーン分類(ASC)に取り組む。
タスク1aは、複数の(実とシミュレートされた)デバイスで記録されたオーディオ信号のASCを10種類の微細なクラスにフォーカスする。
Task 1bは、低複雑さのソリューションを使用して、データを3つの上位クラスに分類することに関心がある。
論文 参考訳(メタデータ) (2020-07-16T15:07:14Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
特定のスケールで高い親和性を持つタスクは、他のスケールでこの動作を維持することが保証されていないことを示す。
本稿では,この発見に基づく新しいアーキテクチャ MTI-Net を提案する。
論文 参考訳(メタデータ) (2020-01-19T21:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。