論文の概要: TSAM: Temporal Link Prediction in Directed Networks based on
Self-Attention Mechanism
- arxiv url: http://arxiv.org/abs/2008.10021v1
- Date: Sun, 23 Aug 2020 11:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 02:54:38.939525
- Title: TSAM: Temporal Link Prediction in Directed Networks based on
Self-Attention Mechanism
- Title(参考訳): TSAM:自己注意機構に基づく方向性ネットワークにおける時間リンク予測
- Authors: Jinsong Li, Jianhua Peng, Shuxin Liu, Lintianran Weng, Cong Li
- Abstract要約: 本稿では,グラフニューラルネットワーク(GCN)と自己認識機構,すなわちTSAMに基づくディープラーニングモデルを提案する。
我々は,TSAMの有効性を検証するために,4つの現実的ネットワーク上で比較実験を行った。
- 参考スコア(独自算出の注目度): 2.5144068869465994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of graph neural networks (GCN) makes it possible to learn
structural features from evolving complex networks. Even though a wide range of
realistic networks are directed ones, few existing works investigated the
properties of directed and temporal networks. In this paper, we address the
problem of temporal link prediction in directed networks and propose a deep
learning model based on GCN and self-attention mechanism, namely TSAM. The
proposed model adopts an autoencoder architecture, which utilizes graph
attentional layers to capture the structural feature of neighborhood nodes, as
well as a set of graph convolutional layers to capture motif features. A graph
recurrent unit layer with self-attention is utilized to learn temporal
variations in the snapshot sequence. We run comparative experiments on four
realistic networks to validate the effectiveness of TSAM. Experimental results
show that TSAM outperforms most benchmarks under two evaluation metrics.
- Abstract(参考訳): グラフニューラルネットワーク(GCN)の開発により、複雑なネットワークの進化から構造的特徴を学ぶことができる。
幅広い現実的なネットワークが指向されているが、有向ネットワークと時間ネットワークの特性を調査する既存の研究はほとんどない。
本稿では,有向ネットワークにおける時間的リンク予測の問題に対処し,gcnと自己アテンション機構に基づくディープラーニングモデル,すなわちtsamを提案する。
提案するモデルはオートエンコーダアーキテクチャを採用しており、グラフ注意層を用いて近傍ノードの構造特徴をキャプチャし、グラフ畳み込み層の集合をモチーフの特徴をキャプチャする。
自己アテンションを有するグラフリカレント単位層を用いて、スナップショットシーケンスの時間変化を学習する。
TSAMの有効性を検証するために、4つの現実的ネットワーク上で比較実験を行った。
実験の結果,TSAMは2つの評価基準でほとんどのベンチマークより優れていた。
関連論文リスト
- How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - A Network Classification Method based on Density Time Evolution Patterns
Extracted from Network Automata [0.0]
そこで我々は,密度時間進化パターン(D-TEP)と状態密度時間進化パターン(SD-TEP)とを識別する,分類のための記述子として使用する情報の代替源を提案する。
その結果,従来の5つの合成ネットワークデータベースと7つの実世界のデータベースと比較すると,顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-11-18T15:27:26Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
本稿では,深層予測モデルを用いて構造化ネットワーク上での転送挙動を捕捉するネットワーク埋め込みフレームワークを提案する。
ネットワーク構造埋め込み層は、Long Short-Term Memory NetworkやRecurrent Neural Networkなど、従来の深部予測モデルに付加される。
ソーシャルネットワーク, 引用ネットワーク, バイオメディカルネットワーク, 協調ネットワーク, 言語ネットワークなど, さまざまなデータセットについて実験を行った。
論文 参考訳(メタデータ) (2021-04-27T16:56:00Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
畳み込みニューラルネットワークは,計算オーバーヘッドが大きいにもかかわらず,コンピュータビジョンタスクの実行において大きな成功を収めている。
構造的(チャネル)プルーニングは、通常、ネットワーク構造を保ちながらモデルの冗長性を低減するために適用される。
既存の構造化プルーニング法では、手作りのルールが必要であり、これは大きなプルーニング空間に繋がる可能性がある。
論文 参考訳(メタデータ) (2020-11-04T07:43:01Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z) - Link Prediction for Temporally Consistent Networks [6.981204218036187]
リンク予測は、動的ネットワークにおける次の関係を推定する。
動的に進化するネットワークを表現するための隣接行列の使用は、異種、スパース、またはネットワーク形成から解析的に学習する能力を制限する。
時間的パラメータ化ネットワークモデルとして不均一な時間進化活動を表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-06T07:28:03Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。