論文の概要: Federated Learning for Cellular-connected UAVs: Radio Mapping and Path
Planning
- arxiv url: http://arxiv.org/abs/2008.10054v1
- Date: Sun, 23 Aug 2020 14:55:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 02:43:56.571967
- Title: Federated Learning for Cellular-connected UAVs: Radio Mapping and Path
Planning
- Title(参考訳): セル接続型UAVのフェデレーション学習:無線マッピングと経路計画
- Authors: Behzad Khamidehi and Elvino S. Sousa
- Abstract要約: 本稿では,UAVの走行時間を最小化し,確率的接続制約を満たすことを保証する。
UAVは異なるミッションを持ち、異なるエリアを飛行するため、収集されたデータはネットワークの接続に関するローカル情報を運ぶ。
最初のステップでは、UAVは環境の停止確率のグローバルモデルを構築します。
第2ステップでは、第1ステップで得られた大域的モデルと高速探索型ランダムツリー(RRT)を用いて、UAVの経路を最適化するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.4366811507669124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To prolong the lifetime of the unmanned aerial vehicles (UAVs), the UAVs need
to fulfill their missions in the shortest possible time. In addition to this
requirement, in many applications, the UAVs require a reliable internet
connection during their flights. In this paper, we minimize the travel time of
the UAVs, ensuring that a probabilistic connectivity constraint is satisfied.
To solve this problem, we need a global model of the outage probability in the
environment. Since the UAVs have different missions and fly over different
areas, their collected data carry local information on the network's
connectivity. As a result, the UAVs can not rely on their own experiences to
build the global model. This issue affects the path planning of the UAVs. To
address this concern, we utilize a two-step approach. In the first step, by
using Federated Learning (FL), the UAVs collaboratively build a global model of
the outage probability in the environment. In the second step, by using the
global model obtained in the first step and rapidly-exploring random trees
(RRTs), we propose an algorithm to optimize UAVs' paths. Simulation results
show the effectiveness of this two-step approach for UAV networks.
- Abstract(参考訳): 無人航空機(UAV)の寿命を延ばすため、UAVは可能な限り短期間でミッションを遂行する必要がある。
この要件に加えて、多くのアプリケーションでは、UAVは飛行中に信頼性の高いインターネット接続を必要とする。
本稿では,UAVの走行時間を最小化し,確率的接続制約を満たすことを保証する。
この問題を解決するには、環境における停止確率のグローバルモデルが必要である。
UAVは異なるミッションを持ち、異なるエリアを飛行するため、収集されたデータはネットワークの接続に関するローカル情報を運ぶ。
その結果、UAVはグローバルモデルを構築するために自身の経験を頼りにすることはできない。
この問題はUAVの経路計画に影響を与える。
この懸念に対処するために,我々は2段階のアプローチを用いる。
最初のステップでは、フェデレーション学習(fl)を使用して、uavsは協調して、環境における停止確率のグローバルモデルを構築します。
第2ステップでは、第1ステップで得られた大域的モデルと高速探索ランダムツリー(RRT)を用いて、UAVの経路を最適化するアルゴリズムを提案する。
シミュレーションの結果,UAVネットワークにおける2段階のアプローチの有効性が示された。
関連論文リスト
- Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
無人航空機(UAV)とメタバースの相乗効果は、UAVメタバースと呼ばれる新しいパラダイムを生み出している。
本稿では,UAVメタバースにおける効率的なUTマイグレーションのためのプルーニング技術に基づく,機械学習に基づく小さなゲームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T02:14:13Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
無人航空機(UAV)は安定した位置決めのために衛星システムに依存している。
このような状況下では、視覚に基づく技術が代替手段として機能し、UAVの自己配置能力を確実にする。
本稿では,UAV自己配置タスク用に設計された最初の公開データセットであるDenseUAVを提案する。
論文 参考訳(メタデータ) (2022-01-23T07:18:55Z) - Solving reward-collecting problems with UAVs: a comparison of online
optimization and Q-learning [2.4251007104039006]
与えられたスタートからゴールまでの短い経路を識別し、すべての報酬を集め、グリッド上でランダムに動く敵を避けるという課題について検討する。
本稿では,Deep Q-Learningモデル,$varepsilon$-greedyタブ状Q-Learningモデル,オンライン最適化フレームワークの3つの方法の比較を行った。
我々の実験は、ランダムな逆数を持つ単純なグリッドワールド環境を用いて設計され、これらの手法がどのように機能するかを示し、性能、精度、計算時間の観点から比較する。
論文 参考訳(メタデータ) (2021-11-30T22:27:24Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z) - Reinforcement Learning-based Joint Path and Energy Optimization of
Cellular-Connected Unmanned Aerial Vehicles [0.0]
バッテリーの充電を考慮し、長いミッションでUAVの問題を解決するため、我々は典型的な短距離経路プランナーを階層的に拡張するために強化学習(RL)を用いてきた。
この問題は、広範囲を飛行するUAVに対してシミュレートされ、Qラーニングアルゴリズムにより、UAVが最適な経路と充電ポリシーを見つけることができる。
論文 参考訳(メタデータ) (2020-11-27T14:16:55Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。