論文の概要: Knowledge-Empowered Representation Learning for Chinese Medical Reading
Comprehension: Task, Model and Resources
- arxiv url: http://arxiv.org/abs/2008.10327v2
- Date: Fri, 20 Aug 2021 03:03:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 08:58:46.690558
- Title: Knowledge-Empowered Representation Learning for Chinese Medical Reading
Comprehension: Task, Model and Resources
- Title(参考訳): 中国医学読解理解のための知識を活用した表現学習:課題・モデル・資源
- Authors: Taolin Zhang, Chengyu Wang, Minghui Qiu, Bite Yang, Xiaofeng He, Jun
Huang
- Abstract要約: 医療領域を対象としたマルチターゲットMRCタスクを導入し,医療質問に対する回答とそれに対応する文章を同時に予測することを目的とする。
本稿では, 医学知識を事前学習言語モデルに融合させる, タスクのための中国の医療用BERTモデル(CMedBERT)を提案する。
実験の結果,CMedBERTはコンテキスト認識と知識認識のトークン表現を融合することにより,強いベースラインを一貫して上回ることがわかった。
- 参考スコア(独自算出の注目度): 36.960318276653986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Reading Comprehension (MRC) aims to extract answers to questions
given a passage. It has been widely studied recently, especially in open
domains. However, few efforts have been made on closed-domain MRC, mainly due
to the lack of large-scale training data. In this paper, we introduce a
multi-target MRC task for the medical domain, whose goal is to predict answers
to medical questions and the corresponding support sentences from medical
information sources simultaneously, in order to ensure the high reliability of
medical knowledge serving. A high-quality dataset is manually constructed for
the purpose, named Multi-task Chinese Medical MRC dataset (CMedMRC), with
detailed analysis conducted. We further propose the Chinese medical BERT model
for the task (CMedBERT), which fuses medical knowledge into pre-trained
language models by the dynamic fusion mechanism of heterogeneous features and
the multi-task learning strategy. Experiments show that CMedBERT consistently
outperforms strong baselines by fusing context-aware and knowledge-aware token
representations.
- Abstract(参考訳): Machine Reading Comprehension (MRC)は、与えられた質問に対する回答を抽出することを目的としている。
近年、特にオープンドメインにおいて広く研究されている。
しかし、大規模なトレーニングデータがないため、クローズドドメイン MRC への取り組みはほとんど行われていない。
本稿では,医療知識提供の信頼性を確保するため,医療情報提供者からの質問に対する回答とそれに対応する支援文を同時に予測することを目的とした医療領域向け多目的MRCタスクを提案する。
高品質なデータセットは、Multi-task Chinese Medical MRC dataset (CMedMRC) と呼ばれる手動で構築され、詳細な分析が行われる。
さらに、異種特徴の動的融合機構とマルチタスク学習戦略により、医学知識を事前学習言語モデルに融合させる、タスクのための中国の医療用BERTモデル(CMedBERT)を提案する。
実験の結果,CMedBERTはコンテキスト認識と知識認識のトークン表現を融合することにより,強いベースラインを一貫して上回ることがわかった。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - TCMD: A Traditional Chinese Medicine QA Dataset for Evaluating Large Language Models [22.76485170022542]
従来の中国医学検査課題を解くための大規模な手動指導を含む,新しいQAデータセットを提案する。
TCMDは、注釈付き医療科目で、さまざまな領域にまたがって大量の質問を集めています。
論文 参考訳(メタデータ) (2024-06-07T13:48:15Z) - M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering [14.198330378235632]
我々は,3つのジェネラリストと3つの専門的なバイオメディカルサブドメインにおいて,22のデータセットに関する大規模な実験研究を行うために,複数選択と抽象質問応答を用いた。
15個のLLMの性能の多面的解析により、リコールや理解の向上につながる命令チューニングなどの成功要因が明らかになった。
最近提案されたドメイン適応モデルには十分な知識が欠如している可能性があるが、収集した医療知識データセットを直接微調整することは、奨励的な結果を示している。
我々は、必要な知識を単に思い出し、提示された知識と統合するモデルの能力の間に大きなギャップがあることを明らかにする、スキル指向手動エラー解析で定量的結果を補完する。
論文 参考訳(メタデータ) (2024-06-06T02:43:21Z) - Developing ChatGPT for Biology and Medicine: A Complete Review of
Biomedical Question Answering [25.569980942498347]
ChatGPTは、医療診断、治療レコメンデーション、その他の医療支援の提供において、QA(QA)の戦略的青写真を探っている。
これは、自然言語処理(NLP)とマルチモーダルパラダイムによる医療領域データの取り込みの増加によって達成される。
論文 参考訳(メタデータ) (2024-01-15T07:21:16Z) - MedSumm: A Multimodal Approach to Summarizing Code-Mixed Hindi-English
Clinical Queries [16.101969130235055]
本稿では,Multimodal Medical Codemixed Question Summarization MMCQSデータセットを紹介する。
このデータセットは、ヒンディー語と英語の混成医療クエリと視覚支援を組み合わせたものだ。
データセット、コード、トレーニング済みのモデルを公開します。
論文 参考訳(メタデータ) (2024-01-03T07:58:25Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
大規模言語モデル(LLM)は、自然言語理解において顕著な能力を示した。
LLMは、ドメイン固有の知識が不足しているため、医学的応用のような正確性を必要とする領域で苦労している。
PMC-LLaMAと呼ばれる医療応用に特化した強力なオープンソース言語モデルの構築手順について述べる。
論文 参考訳(メタデータ) (2023-04-27T18:29:05Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。