Optimal control towards sustainable wastewater treatment plants based on
multi-agent reinforcement learning
- URL: http://arxiv.org/abs/2008.10417v3
- Date: Wed, 14 Apr 2021 08:04:28 GMT
- Title: Optimal control towards sustainable wastewater treatment plants based on
multi-agent reinforcement learning
- Authors: Kehua Chen, Hongcheng Wang, Borja Valverde-Perezc, Siyuan Zhai, Luca
Vezzaro, Aijie Wang
- Abstract summary: This study used a novel technique, multi-agent deep reinforcement learning, to optimize dissolved oxygen and chemical dosage in a WWTP.
The result shows that optimization based on LCA has lower environmental impacts compared to baseline scenario.
The cost-oriented control strategy exhibits comparable overall performance to the LCA driven strategy.
- Score: 1.0765359420035392
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wastewater treatment plants are designed to eliminate pollutants and
alleviate environmental pollution. However, the construction and operation of
WWTPs consume resources, emit greenhouse gases (GHGs) and produce residual
sludge, thus require further optimization. WWTPs are complex to control and
optimize because of high nonlinearity and variation. This study used a novel
technique, multi-agent deep reinforcement learning, to simultaneously optimize
dissolved oxygen and chemical dosage in a WWTP. The reward function was
specially designed from life cycle perspective to achieve sustainable
optimization. Five scenarios were considered: baseline, three different
effluent quality and cost-oriented scenarios. The result shows that
optimization based on LCA has lower environmental impacts compared to baseline
scenario, as cost, energy consumption and greenhouse gas emissions reduce to
0.890 CNY/m3-ww, 0.530 kWh/m3-ww, 2.491 kg CO2-eq/m3-ww respectively. The
cost-oriented control strategy exhibits comparable overall performance to the
LCA driven strategy since it sacrifices environmental bene ts but has lower
cost as 0.873 CNY/m3-ww. It is worth mentioning that the retrofitting of WWTPs
based on resources should be implemented with the consideration of impact
transfer. Specifically, LCA SW scenario decreases 10 kg PO4-eq in
eutrophication potential compared to the baseline within 10 days, while
significantly increases other indicators. The major contributors of each
indicator are identified for future study and improvement. Last, the author
discussed that novel dynamic control strategies required advanced sensors or a
large amount of data, so the selection of control strategies should also
consider economic and ecological conditions.
Related papers
- Towards Optimal Environmental Policies: Policy Learning under Arbitrary Bipartite Network Interference [0.0]
Emissions-reducing interventions on coal-fired power plants have proven to be an effective, but costly, strategy for reducing pollution-related health burdens.
We introduce novel learning methods to determine the optimal policy under arbitrary network interference (BNI)
We find that annual IHD hospitalization rates could be reduced in a range from 20.66-44.51 per 10,000 person-years through optimal policies under different cost constraints.
arXiv Detail & Related papers (2024-10-10T20:39:53Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption [9.42048156323799]
This study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios.
The model achieved a significant reduction in fuel consumption, lowering it by 10.42% compared to actual driving scenarios.
arXiv Detail & Related papers (2024-07-22T16:48:37Z) - Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages [56.98243487769916]
Plasticity, the ability of a neural network to evolve with new data, is crucial for high-performance and sample-efficient visual reinforcement learning.
We propose Adaptive RR, which dynamically adjusts the replay ratio based on the critic's plasticity level.
arXiv Detail & Related papers (2023-10-11T12:05:34Z) - Towards Green AI in Fine-tuning Large Language Models via Adaptive
Backpropagation [58.550710456745726]
Fine-tuning is the most effective way of adapting pre-trained large language models (LLMs) to downstream applications.
Existing techniques on efficient fine-tuning can only achieve limited reduction of such FLOPs.
We present GreenTrainer, a new technique that adaptively evaluates different tensors' backpropagation costs and contributions to the fine-tuned model accuracy.
arXiv Detail & Related papers (2023-09-22T21:55:18Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - PLASTIC: Improving Input and Label Plasticity for Sample Efficient
Reinforcement Learning [54.409634256153154]
In Reinforcement Learning (RL), enhancing sample efficiency is crucial.
In principle, off-policy RL algorithms can improve sample efficiency by allowing multiple updates per environment interaction.
Our study investigates the underlying causes of this phenomenon by dividing plasticity into two aspects.
arXiv Detail & Related papers (2023-06-19T06:14:51Z) - Automated deep reinforcement learning for real-time scheduling strategy
of multi-energy system integrated with post-carbon and direct-air carbon
captured system [4.721325160754968]
The adoption of CDRT is not economically viable at the current carbon price.
The proposed DRL agent can meet the prosumers' multi-energy demand and schedule the CDRT energy demand economically.
The configuration with PCCS and solid-sorbent DACS is considered the most suitable.
arXiv Detail & Related papers (2023-01-18T20:22:44Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - A deep reinforcement learning model for predictive maintenance planning
of road assets: Integrating LCA and LCCA [0.0]
This research proposes a framework using Reinforcement Learning (RL) to determine type and timing of M&R practices.
The results propose a 20-year M&R plan in which road condition remains in an excellent condition range.
Decision-makers and transportation agencies can use this scheme to conduct better maintenance practices that can prevent budget waste and minimize the environmental impacts.
arXiv Detail & Related papers (2021-12-20T13:46:39Z) - Estimating air quality co-benefits of energy transition using machine
learning [5.758035706324685]
Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement.
We develop a novel and succinct machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations.
Our findings prompt careful policy designs to maximize cost-effectiveness in the transition towards a carbon-neutral energy system.
arXiv Detail & Related papers (2021-05-29T14:52:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.