EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption
- URL: http://arxiv.org/abs/2408.03950v1
- Date: Mon, 22 Jul 2024 16:48:37 GMT
- Title: EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption
- Authors: Hui Zhong, Xianda Chen, PakHin Tiu, Hongliang Lu, Meixin Zhu,
- Abstract summary: This study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios.
The model achieved a significant reduction in fuel consumption, lowering it by 10.42% compared to actual driving scenarios.
- Score: 9.42048156323799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To alleviate energy shortages and environmental impacts caused by transportation, this study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios. Employing the NGSIM datasets, the performance of EcoFollower was assessed in comparison with the well-established Intelligent Driver Model (IDM). The findings demonstrate that EcoFollower excels in simulating realistic driving behaviors, maintaining smooth vehicle operations, and closely matching the ground truth metrics of time-to-collision (TTC), headway, and comfort. Notably, the model achieved a significant reduction in fuel consumption, lowering it by 10.42\% compared to actual driving scenarios. These results underscore the capability of RL-based models like EcoFollower to enhance autonomous vehicle algorithms, promoting safer and more energy-efficient driving strategies.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Modeling of New Energy Vehicles' Impact on Urban Ecology Focusing on Behavior [0.0]
surging demand for new energy vehicles is driven by the imperative to conserve energy, reduce emissions, and enhance the ecological ambiance.
behavioral analysis and mining usage patterns of new energy vehicles can be identified.
Environmental computational modeling method has been proposed to simulate the interaction between new energy vehicles and the environment.
arXiv Detail & Related papers (2024-06-06T14:03:52Z) - A Scoping Review of Energy-Efficient Driving Behaviors and Applied
State-of-the-Art AI Methods [2.765388013062202]
There is no comprehensive investigation into energy-efficient driving behaviors and strategies.
Many state-of-the-art AI models have been applied for the analysis of eco-friendly driving styles, but no overview is available.
This paper conducts a thorough literature review on ecological driving behaviors and styles and analyzes the driving factors influencing energy consumption.
arXiv Detail & Related papers (2024-03-04T13:57:34Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
We propose a new driver behaviour-centric EV energy consumption estimation model using probabilistic neural networks with model uncertainty.
By incorporating model uncertainty into neural networks, we have created an ensemble of neural networks using Monte Carlo.
Our approach achieves a mean absolute percentage error of 9.3% and outperforms other existing EV energy consumption models in terms of accuracy.
arXiv Detail & Related papers (2023-07-02T04:30:20Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Driver Assistance Eco-driving and Transmission Control with Deep
Reinforcement Learning [2.064612766965483]
In this paper, a model-free deep reinforcement learning (RL) control agent is proposed for active Eco-driving assistance.
It trades-off fuel consumption against other driver-accommodation objectives, and learns optimal traction torque and transmission shifting policies from experience.
It shows superior performance in minimizing fuel consumption compared to a baseline controller that has full knowledge of fuel-efficiency tables.
arXiv Detail & Related papers (2022-12-15T02:52:07Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
This work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem.
The proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent.
arXiv Detail & Related papers (2021-05-25T03:41:29Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.