TORNADO-Net: mulTiview tOtal vaRiatioN semAntic segmentation with
Diamond inceptiOn module
- URL: http://arxiv.org/abs/2008.10544v1
- Date: Mon, 24 Aug 2020 16:32:41 GMT
- Title: TORNADO-Net: mulTiview tOtal vaRiatioN semAntic segmentation with
Diamond inceptiOn module
- Authors: Martin Gerdzhev, Ryan Razani, Ehsan Taghavi, Bingbing Liu
- Abstract summary: TORNADO-Net is a neural network for 3D LiDAR point cloud semantic segmentation.
We incorporate a multi-view (bird-eye and range) projection feature extraction with an encoder-decoder ResNet architecture.
We also take advantage of the fact that the LiDAR data encompasses 360 degrees field of view and uses circular padding.
- Score: 23.112192919085825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of point clouds is a key component of scene
understanding for robotics and autonomous driving. In this paper, we introduce
TORNADO-Net - a neural network for 3D LiDAR point cloud semantic segmentation.
We incorporate a multi-view (bird-eye and range) projection feature extraction
with an encoder-decoder ResNet architecture with a novel diamond context block.
Current projection-based methods do not take into account that neighboring
points usually belong to the same class. To better utilize this local
neighbourhood information and reduce noisy predictions, we introduce a
combination of Total Variation, Lovasz-Softmax, and Weighted Cross-Entropy
losses. We also take advantage of the fact that the LiDAR data encompasses 360
degrees field of view and uses circular padding. We demonstrate
state-of-the-art results on the SemanticKITTI dataset and also provide thorough
quantitative evaluations and ablation results.
Related papers
- Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
We propose a novel 3D point cloud representation network, called Dynamic Clustering Transformer Network (DCTNet)
It has an encoder-decoder architecture, allowing for both local and global feature learning.
Our method was evaluated on an object-based dataset (ShapeNet), an urban navigation dataset (Toronto-3D), and a multispectral LiDAR dataset.
arXiv Detail & Related papers (2023-05-30T01:11:05Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by
Learning Features in Complementary Representations [3.0413873719021995]
We introduce a novel way to predict semantic information from sparse, single-shot LiDAR measurements in the context of autonomous driving.
The approach is aimed specifically at improving the semantic segmentation of top-view grid maps.
For each representation a tailored deep learning architecture is developed to effectively extract semantic information.
arXiv Detail & Related papers (2022-03-02T14:49:51Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images.
Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input.
We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-08-09T10:17:27Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3Net is a novel convolutional neural network for LiDAR point cloud semantic segmentation.
It adopts an encoder-decoder backbone that consists of Sparse Intra-channel Attention Module (SIntraAM) and Sparse Inter-channel Attention Module (SInterAM)
arXiv Detail & Related papers (2021-03-15T22:15:24Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
arXiv Detail & Related papers (2020-10-08T22:01:23Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.