Refinement of Predicted Missing Parts Enhance Point Cloud Completion
- URL: http://arxiv.org/abs/2010.04278v1
- Date: Thu, 8 Oct 2020 22:01:23 GMT
- Title: Refinement of Predicted Missing Parts Enhance Point Cloud Completion
- Authors: Alexis Mendoza, Alexander Apaza, Ivan Sipiran, Cristian Lopez
- Abstract summary: Point cloud completion is the task of predicting complete geometry from partial observations using a point set representation for a 3D shape.
Previous approaches propose neural networks to directly estimate the whole point cloud through encoder-decoder models fed by the incomplete point set.
This paper proposes an end-to-end neural network architecture that focuses on computing the missing geometry and merging the known input and the predicted point cloud.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud completion is the task of predicting complete geometry from
partial observations using a point set representation for a 3D shape. Previous
approaches propose neural networks to directly estimate the whole point cloud
through encoder-decoder models fed by the incomplete point set. By predicting
the complete model, the current methods compute redundant information because
the output also contains the known incomplete input geometry. This paper
proposes an end-to-end neural network architecture that focuses on computing
the missing geometry and merging the known input and the predicted point cloud.
Our method is composed of two neural networks: the missing part prediction
network and the merging-refinement network. The first module focuses on
extracting information from the incomplete input to infer the missing geometry.
The second module merges both point clouds and improves the distribution of the
points. Our experiments on ShapeNet dataset show that our method outperforms
the state-of-the-art methods in point cloud completion. The code of our methods
and experiments is available in
\url{https://github.com/ivansipiran/Refinement-Point-Cloud-Completion}.
Related papers
- CircNet: Meshing 3D Point Clouds with Circumcenter Detection [67.23307214942696]
Reconstructing 3D point clouds into triangle meshes is a key problem in computational geometry and surface reconstruction.
We introduce a deep neural network that detects the circumcenters to achieve point cloud triangulation.
We validate our method on prominent datasets of both watertight and open surfaces.
arXiv Detail & Related papers (2023-01-23T03:32:57Z) - Explaining Deep Neural Networks for Point Clouds using Gradient-based
Visualisations [1.2891210250935146]
We propose a novel approach to generate coarse visual explanations of networks designed to classify unstructured 3D data.
Our method uses gradients flowing back to the final feature map layers and maps these values as contributions of the corresponding points in the input point cloud.
The generality of our approach is tested on various point cloud classification networks, including'single object' networks PointNet, PointNet++, DGCNN, and a'scene' network VoteNet.
arXiv Detail & Related papers (2022-07-26T15:42:08Z) - Point Cloud Semantic Segmentation using Multi Scale Sparse Convolution
Neural Network [0.0]
We propose a feature extraction module based on multi-scale ultra-sparse convolution and a feature selection module based on channel attention.
By introducing multi-scale sparse convolution, network could capture richer feature information based on convolution kernels of different sizes.
arXiv Detail & Related papers (2022-05-03T15:01:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Graph-Guided Deformation for Point Cloud Completion [35.10606375236494]
We propose a Graph-Guided Deformation Network, which respectively regards the input data and intermediate generation as controlling and supporting points.
Our key insight is to simulate the least square Laplacian deformation process via mesh deformation methods, which brings adaptivity for modeling variation in geometry details.
We are the first to refine the point cloud completion task by mimicing traditional graphics algorithms with GCN-guided deformation.
arXiv Detail & Related papers (2021-11-11T12:55:26Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - Self-Sampling for Neural Point Cloud Consolidation [83.31236364265403]
We introduce a novel technique for neural point cloud consolidation which learns from only the input point cloud.
We repeatedly self-sample the input point cloud with global subsets that are used to train a deep neural network.
We demonstrate the ability to consolidate point sets from a variety of shapes, while eliminating outliers and noise.
arXiv Detail & Related papers (2020-08-14T17:16:02Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
This work addresses the problem of point cloud registration using deep neural networks.
We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins.
Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
arXiv Detail & Related papers (2020-07-22T08:20:57Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.