論文の概要: Example-Based Named Entity Recognition
- arxiv url: http://arxiv.org/abs/2008.10570v1
- Date: Mon, 24 Aug 2020 17:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 12:16:37.278963
- Title: Example-Based Named Entity Recognition
- Title(参考訳): 例に基づく名前付きエンティティ認識
- Authors: Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, and Weizhu
Chen
- Abstract要約: 少ないデータの存在下で、名前付きエンティティ認識(NER)に対する新しいアプローチを提案する。
列車なしの少数ショット学習アプローチは、質問応答からインスピレーションを得て、新しい、目に見えない領域のエンティティスパンを識別する。
- 参考スコア(独自算出の注目度): 25.055684043158504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to named entity recognition (NER) in the presence
of scarce data that we call example-based NER. Our train-free few-shot learning
approach takes inspiration from question-answering to identify entity spans in
a new and unseen domain. In comparison with the current state-of-the-art, the
proposed method performs significantly better, especially when using a low
number of support examples.
- Abstract(参考訳): 我々は、サンプルベースNERと呼ぶデータが少ない場合に、名前付きエンティティ認識(NER)を新たに提案する。
トレインフリーの少数ショット学習アプローチは、質問応答からインスピレーションを得て、新しくて目に見えないドメイン内のエンティティスパンを識別します。
現状と比較すると,提案手法は,特にサポート例が少ない場合において有意に優れた性能を示す。
関連論文リスト
- A Unified Label-Aware Contrastive Learning Framework for Few-Shot Named Entity Recognition [6.468625143772815]
ラベル認識型トークンレベルのコントラスト学習フレームワークを提案する。
提案手法は,ラベルのセマンティクスを接尾辞のプロンプトとして活用することでコンテキストを豊かにする。
コンテキストネイティブとコンテキストラベルの対比学習目標を同時に最適化する。
論文 参考訳(メタデータ) (2024-04-26T06:19:21Z) - In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
数発のネストネストNERの設定に有効で革新的なICLフレームワークを導入する。
我々は、新しい実演選択機構であるEnDe retrieverを考案し、ICLプロンプトを改善する。
EnDe検索では,意味的類似性,境界類似性,ラベル類似性という3種類の表現学習を行うために,コントラスト学習を用いる。
論文 参考訳(メタデータ) (2024-02-02T06:57:53Z) - Less than One-shot: Named Entity Recognition via Extremely Weak
Supervision [46.81604901567282]
極端に弱い監督環境下で、名前付きエンティティ認識問題について検討する。
そこで本稿では,最先端のワンショットNER法より優れたX-NERを提案する。
X-NERは、基礎となる言語モデルの言語間能力の継承など、いくつかの特筆すべき特性を持っている。
論文 参考訳(メタデータ) (2023-11-06T04:20:42Z) - PromptNER: A Prompting Method for Few-shot Named Entity Recognition via
k Nearest Neighbor Search [56.81939214465558]
本稿では,近距離探索による数発NERの新規プロンプト法であるPromptNERを提案する。
我々は、エンティティカテゴリ情報を含むプロンプトを使用してラベルのプロトタイプを構築する。
Few-NERDデータセットとCrossNERデータセットの広範な実験により,本モデルが最先端手法よりも優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-05-20T15:47:59Z) - FactMix: Using a Few Labeled In-domain Examples to Generalize to
Cross-domain Named Entity Recognition [42.32824906747491]
本稿では,モデルの一般化能力を向上させるために,2段階の有理中心データ拡張手法を提案する。
いくつかのデータセットの結果から,モデルに依存しない手法はドメイン間NERタスクの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-08-24T12:12:38Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - Focusing on Potential Named Entities During Active Label Acquisition [0.0]
名前付きエンティティ認識(NER)は、構造化されていないテキスト中の名前付きエンティティの参照を識別することを目的としている。
多くのドメイン固有のNERアプリケーションは、まだかなりの量のラベル付きデータを要求する。
本稿では,長すぎるか短すぎる文をペナル化するための,データ駆動正規化手法を提案する。
論文 参考訳(メタデータ) (2021-11-06T09:04:16Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
ラベル付きクラスとラベルなしクラスの両方の例に基づく表現学習を通じて、データセットにおける新しい概念を識別することに興味がある。
異種ラベル空間上の複数の教師付きメタクラス分類器によって与えられる構成知識を用いて、自然に未知のクラス内のサンプルをクラスタリングする学習手法を提案する。
提案アルゴリズムは,未確認クラスの識別性の向上と,新しいクラスに一般化可能な既知のクラス表現の学習を併用して,新しい概念を探索する。
論文 参考訳(メタデータ) (2021-06-29T11:51:57Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Active Learning for Coreference Resolution using Discrete Annotation [76.36423696634584]
我々は、コア参照解決におけるアクティブラーニングのためのペアワイズアノテーションを改善した。
提案された参照ペアがコアフェレントでないと判断された場合、アノテータに参照アンテセントを識別するよう依頼する。
既存のベンチマークコアベンチマークデータセットを用いた実験では、この追加質問からの信号が人間のアノテーション時間当たりの大幅なパフォーマンス向上につながることが示された。
論文 参考訳(メタデータ) (2020-04-28T17:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。