Penalizing Gradient Norm for Efficiently Improving Generalization in
Deep Learning
- URL: http://arxiv.org/abs/2202.03599v1
- Date: Tue, 8 Feb 2022 02:03:45 GMT
- Title: Penalizing Gradient Norm for Efficiently Improving Generalization in
Deep Learning
- Authors: Yang Zhao, Hao Zhang and Xiuyuan Hu
- Abstract summary: How to train deep neural networks (DNNs) to generalize well is a central concern in deep learning.
We propose an effective method to improve the model generalization by penalizing the gradient norm of loss function during optimization.
- Score: 13.937644559223548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How to train deep neural networks (DNNs) to generalize well is a central
concern in deep learning, especially for severely overparameterized networks
nowadays. In this paper, we propose an effective method to improve the model
generalization by additionally penalizing the gradient norm of loss function
during optimization. We demonstrate that confining the gradient norm of loss
function could help lead the optimizers towards finding flat minima. We
leverage the first-order approximation to efficiently implement the
corresponding gradient to fit well in the gradient descent framework. In our
experiments, we confirm that when using our methods, generalization performance
of various models could be improved on different datasets. Also, we show that
the recent sharpness-aware minimization method \cite{DBLP:conf/iclr/ForetKMN21}
is a special, but not the best, case of our method, where the best case of our
method could give new state-of-art performance on these tasks.
Related papers
- Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
We present a new swarm-swarm-based framework utilizing the underlying dynamical process of descent.
The biggest advantage of this approach is greater exploration around the current state before deciding descent descent.
arXiv Detail & Related papers (2022-11-26T09:06:15Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Adapting Stepsizes by Momentumized Gradients Improves Optimization and
Generalization [89.66571637204012]
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
textscAdaMomentum on vision, and achieves state-the-art results consistently on other tasks including language processing.
arXiv Detail & Related papers (2021-06-22T03:13:23Z) - Population Gradients improve performance across data-sets and
architectures in object classification [6.17047113475566]
We present a new method to calculate the gradients while training Neural Networks (NNs)
It significantly improves final performance across architectures, data-sets, hyper- parameter values, training length, and model sizes.
Besides being effective in the wide array situations that we have tested, the increase in performance (e.g. F1) is as high or higher than this one of all the other widespread performance-improving methods.
arXiv Detail & Related papers (2020-10-23T09:40:23Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
We introduce optimization methods for convolutional neural networks that can be used to improve existing gradient-based optimization in terms of generalization error.
We show that defining the gradients along the output channel direction leads to a performance boost, while other directions can be detrimental.
arXiv Detail & Related papers (2020-08-25T00:44:09Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Gradient Centralization: A New Optimization Technique for Deep Neural
Networks [74.935141515523]
gradient centralization (GC) operates directly on gradients by centralizing the gradient vectors to have zero mean.
GC can be viewed as a projected gradient descent method with a constrained loss function.
GC is very simple to implement and can be easily embedded into existing gradient based DNNs with only one line of code.
arXiv Detail & Related papers (2020-04-03T10:25:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.