Counterfactual Explanations for Machine Learning on Multivariate Time
Series Data
- URL: http://arxiv.org/abs/2008.10781v1
- Date: Tue, 25 Aug 2020 02:04:59 GMT
- Title: Counterfactual Explanations for Machine Learning on Multivariate Time
Series Data
- Authors: Emre Ates, Burak Aksar, Vitus J. Leung, Ayse K. Coskun
- Abstract summary: This paper proposes a novel explainability technique for providing counterfactual explanations for supervised machine learning frameworks.
The proposed method outperforms state-of-the-art explainability methods on several different ML frameworks and data sets in metrics such as faithfulness and robustness.
- Score: 0.9274371635733836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Applying machine learning (ML) on multivariate time series data has growing
popularity in many application domains, including in computer system
management. For example, recent high performance computing (HPC) research
proposes a variety of ML frameworks that use system telemetry data in the form
of multivariate time series so as to detect performance variations, perform
intelligent scheduling or node allocation, and improve system security. Common
barriers for adoption for these ML frameworks include the lack of user trust
and the difficulty of debugging. These barriers need to be overcome to enable
the widespread adoption of ML frameworks in production systems. To address this
challenge, this paper proposes a novel explainability technique for providing
counterfactual explanations for supervised ML frameworks that use multivariate
time series data. The proposed method outperforms state-of-the-art
explainability methods on several different ML frameworks and data sets in
metrics such as faithfulness and robustness. The paper also demonstrates how
the proposed method can be used to debug ML frameworks and gain a better
understanding of HPC system telemetry data.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Probabilistic ML Verification via Weighted Model Integration [11.812078181471634]
Probability formal verification (PFV) of machine learning models is in its infancy.
We propose a unifying framework for the PFV of ML systems based on Weighted Model Integration (WMI)
We show how successful scaling techniques in the ML verification literature can be generalized beyond their original scope.
arXiv Detail & Related papers (2024-02-07T14:24:04Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Enhancing Pattern Classification in Support Vector Machines through
Matrix Formulation [0.0]
The reliance on vector-based formulations in existing SVM-based models poses limitations regarding flexibility and ease of incorporating additional terms to handle specific challenges.
We introduce a matrix formulation for SVM that effectively addresses these constraints.
Experimental evaluations on multilabel and multiclass datasets demonstrate that Matrix SVM achieves superior time efficacy.
arXiv Detail & Related papers (2023-07-18T15:56:39Z) - Optimal Event Monitoring through Internet Mashup over Multivariate Time
Series [77.34726150561087]
This framework supports the services of model definitions, querying, parameter learning, model evaluations, data monitoring, decision recommendations, and web portals.
We further extend the MTSA data model and query language to support this class of problems for the services of learning, monitoring, and recommendation.
arXiv Detail & Related papers (2022-10-18T16:56:17Z) - Multiscale Laplacian Learning [3.24029503704305]
This paper presents two innovative multiscale Laplacian learning approaches for machine learning tasks.
The first approach, called multi Kernel manifold learning (MML), integrates manifold learning with multi Kernel information.
The second approach, called the multiscale MBO (MMBO) method, introduces multiscale Laplacians to a modification of the famous classical Merriman-Bence-Osher scheme.
arXiv Detail & Related papers (2021-09-08T15:25:32Z) - The Benchmark Lottery [114.43978017484893]
"A benchmark lottery" describes the overall fragility of the machine learning benchmarking process.
We show that the relative performance of algorithms may be altered significantly simply by choosing different benchmark tasks.
arXiv Detail & Related papers (2021-07-14T21:08:30Z) - Machine Learning-enhanced Receive Processing for MU-MIMO OFDM Systems [15.423422040627331]
Machine learning can be used to improve multi-user multiple-input multiple-output (MU-MIMO) receive processing.
We propose a new strategy which preserves the benefits of a conventional receiver, but enhances specific parts with ML components.
arXiv Detail & Related papers (2021-06-30T14:02:27Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.