Federated Learning for Channel Estimation in Conventional and
RIS-Assisted Massive MIMO
- URL: http://arxiv.org/abs/2008.10846v2
- Date: Mon, 15 Nov 2021 09:01:52 GMT
- Title: Federated Learning for Channel Estimation in Conventional and
RIS-Assisted Massive MIMO
- Authors: Ahmet M. Elbir and Sinem Coleri
- Abstract summary: Channel estimation via machine learning requires model training on a dataset, which usually includes the received pilot signals as input and channel data as output.
In previous works, model training is mostly done via centralized learning (CL), where the whole training dataset is collected from the users at the base station (BS)
We propose a federated learning (FL) framework for channel estimation. We design a convolutional neural network (CNN) trained on the local datasets of the users without sending them to the BS.
We evaluate the performance for noisy and quantized model transmission and show that the proposed approach provides approximately 16 times lower overhead than CL
- Score: 12.487990897680422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) has attracted a great research interest for physical
layer design problems, such as channel estimation, thanks to its low complexity
and robustness. Channel estimation via ML requires model training on a dataset,
which usually includes the received pilot signals as input and channel data as
output. In previous works, model training is mostly done via centralized
learning (CL), where the whole training dataset is collected from the users at
the base station (BS). This approach introduces huge communication overhead for
data collection. In this paper, to address this challenge, we propose a
federated learning (FL) framework for channel estimation. We design a
convolutional neural network (CNN) trained on the local datasets of the users
without sending them to the BS. We develop FL-based channel estimation schemes
for both conventional and RIS (intelligent reflecting surface) assisted massive
MIMO (multiple-input multiple-output) systems, where a single CNN is trained
for two different datasets for both scenarios. We evaluate the performance for
noisy and quantized model transmission and show that the proposed approach
provides approximately 16 times lower overhead than CL, while maintaining
satisfactory performance close to CL. Furthermore, the proposed architecture
exhibits lower estimation error than the state-of-the-art ML-based schemes.
Related papers
- Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Federated Channel Learning for Intelligent Reflecting Surfaces With
Fewer Pilot Signals [25.592568132720157]
This paper proposes a federated learning (FL) framework to jointly estimate both direct and cascaded channels in IRS-assisted wireless systems.
We show that the proposed FL-based channel estimation approach requires approximately 60% fewer pilot signals and it exhibits 12 times lower transmission overhead than CL.
arXiv Detail & Related papers (2022-05-06T13:23:39Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
We propose an ML-enhanced MU-MIMO receiver that builds on top of a conventional linear minimum mean squared error (LMMSE) architecture.
CNNs are used to compute an approximation of the second-order statistics of the channel estimation error.
A CNN-based demapper jointly processes a large number of frequency-division multiplexing symbols and subcarriers.
arXiv Detail & Related papers (2020-12-15T09:55:37Z) - Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO [12.487990897680422]
We introduce a federated learning (FL) based framework for hybrid beamforming, where the model training is performed at the base station.
We design a convolutional neural network, in which the input is the channel data, yielding the analog beamformers at the output.
FL is demonstrated to be more tolerant to the imperfections and corruptions in the channel data as well as having less transmission overhead than CML.
arXiv Detail & Related papers (2020-05-20T11:21:07Z) - Online unsupervised deep unfolding for MIMO channel estimation [0.0]
We propose to perform online learning for channel estimation in a massive context.
This leads to a computationally efficient neural network that can be trained online when with an imperfect model.
It is applied to realistic channels and shows great performance, achieving channel estimation error almost as low as one would get with a perfectly calibrated system.
arXiv Detail & Related papers (2020-04-30T07:32:58Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.