Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation
- URL: http://arxiv.org/abs/2108.01529v1
- Date: Tue, 3 Aug 2021 14:26:14 GMT
- Title: Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation
- Authors: Yifan Ma, Yifei Shen, Xianghao Yu, Jun Zhang, S.H. Song, Khaled B.
Letaief
- Abstract summary: Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
- Score: 10.775558382613077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Channel estimation and beamforming play critical roles in frequency-division
duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. However,
these two modules have been treated as two stand-alone components, which makes
it difficult to achieve a global system optimality. In this paper, we propose a
deep learning-based approach that directly optimizes the beamformers at the
base station according to the received uplink pilots, thereby, bypassing the
explicit channel estimation. Different from the existing fully data-driven
approach where all the modules are replaced by deep neural networks (DNNs), a
neural calibration method is proposed to improve the scalability of the
end-to-end design. In particular, the backbone of conventional time-efficient
algorithms, i.e., the least-squares (LS) channel estimator and the zero-forcing
(ZF) beamformer, is preserved and DNNs are leveraged to calibrate their inputs
for better performance. The permutation equivariance property of the formulated
resource allocation problem is then identified to design a low-complexity
neural network architecture. Simulation results will show the superiority of
the proposed neural calibration method over benchmark schemes in terms of both
the spectral efficiency and scalability in large-scale wireless networks.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
We propose a data-driven deep learning-based unified hybrid beamforming framework for time division duplex and frequency division duplex systems.
For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network.
While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network.
arXiv Detail & Related papers (2022-01-18T07:21:00Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
A novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels.
The transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design.
The non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities.
arXiv Detail & Related papers (2021-05-04T02:47:59Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
It is well-known problem of finding the optimal beamformers in massive multiple-input multiple-output (MIMO) networks.
We propose a novel deep learning based paper algorithm to address this problem.
arXiv Detail & Related papers (2020-11-08T12:48:06Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.