論文の概要: Efficient Blind-Spot Neural Network Architecture for Image Denoising
- arxiv url: http://arxiv.org/abs/2008.11010v1
- Date: Tue, 25 Aug 2020 13:48:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 03:35:15.413295
- Title: Efficient Blind-Spot Neural Network Architecture for Image Denoising
- Title(参考訳): 画像デノイジングのための効率的なブラインドスポットニューラルネットワークアーキテクチャ
- Authors: David Honz\'atko, Siavash A. Bigdeli, Engin T\"uretken, L. Andrea
Dunbar
- Abstract要約: 本稿では,視覚障害者の目視特性を実現するためにダイレーションを用いた完全畳み込みネットワークアーキテクチャを提案する。
我々のネットワークは,従来の作業と確立したデータセットの最先端結果よりもパフォーマンスを向上する。
- 参考スコア(独自算出の注目度): 4.513547390985147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image denoising is an essential tool in computational photography. Standard
denoising techniques, which use deep neural networks at their core, require
pairs of clean and noisy images for its training. If we do not possess the
clean samples, we can use blind-spot neural network architectures, which
estimate the pixel value based on the neighbouring pixels only. These networks
thus allow training on noisy images directly, as they by-design avoid trivial
solutions. Nowadays, the blind-spot is mostly achieved using shifted
convolutions or serialization. We propose a novel fully convolutional network
architecture that uses dilations to achieve the blind-spot property. Our
network improves the performance over the prior work and achieves
state-of-the-art results on established datasets.
- Abstract(参考訳): 画像デノイジングは、計算写真において必須のツールである。
ディープニューラルネットワークをコアとする標準的なデノイジング技術では、トレーニングにはクリーンでノイズの多いイメージのペアが必要となる。
クリーンサンプルを持っていない場合は、隣接するピクセルのみに基づいてピクセル値を推定する盲点ニューラルネットワークアーキテクチャを使用することができる。
したがって、これらのネットワークはノイズの多い画像を直接トレーニングすることができる。
現在、盲点は主にシフトした畳み込みやシリアライゼーションによって達成されている。
本稿では,目隠しスポット特性を実現するために拡張を用いた,新しい完全畳み込み型ネットワークアーキテクチャを提案する。
当社のネットワークは,従来の作業よりもパフォーマンスを向上し,確立したデータセットで最先端の結果を得る。
関連論文リスト
- Self-supervised Image Denoising with Downsampled Invariance Loss and
Conditional Blind-Spot Network [12.478287906337194]
ほとんどの代表的自己監督型デノイザーは盲点ネットワークに基づいている。
標準的な盲点ネットワークは、ノイズの画素ワイド相関により、実際のカメラノイズを低減できない。
実雑音を除去できる新しい自己教師型トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-19T08:55:27Z) - Spatially Adaptive Self-Supervised Learning for Real-World Image
Denoising [73.71324390085714]
本稿では,現実の sRGB 画像復号化の問題を解決するために,新しい視点を提案する。
ノイズの多い画像における平坦領域とテクスチャ領域のそれぞれの特徴を考慮し、それらを個別に管理する。
LAN自体がBNNの出力で管理されているのに対して,我々はその要件を満たすためのローカル・アウェア・ネットワーク(LAN)を提案する。
論文 参考訳(メタデータ) (2023-03-27T06:18:20Z) - NBD-GAP: Non-Blind Image Deblurring Without Clean Target Images [79.33220095067749]
良好な性能を得るためには、トレーニングには大量のぼやけたクリーンなイメージペアが必要である。
テスト中のぼやけた画像とぼやけたカーネルが、トレーニング中に使用するものとは大きく異なる場合、ディープネットワークはよく機能しないことが多い。
論文 参考訳(メタデータ) (2022-09-20T06:21:11Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Selective Residual M-Net for Real Image Denoising [6.909688694501238]
本稿では,視覚的実画像復調ネットワーク(SRMNet)を提案する。
具体的には、M-Netと呼ばれる階層構造上の残留ブロックを持つ選択的カーネルを用いて、マルチスケールのセマンティック情報を強化する。
OurNetは、定量的メトリクスと視覚的品質の点で、2つの合成および2つの実世界のノイズの多いデータセット上で、競合するパフォーマンス結果を持っています。
論文 参考訳(メタデータ) (2022-03-03T11:10:30Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Efficient Deep Image Denoising via Class Specific Convolution [24.103826414190216]
画素ワイズ分類に基づく画像復調のための効率的なディープニューラルネットワークを提案する。
提案手法は性能を犠牲にすることなく計算コストを削減できる。
論文 参考訳(メタデータ) (2021-03-02T10:28:15Z) - Exploring ensembles and uncertainty minimization in denoising networks [0.522145960878624]
画素とチャネルに適切な重みを割り当てることに焦点を当てた2つの注意モジュールからなる融合モデルを提案する。
実験の結果,本モデルでは,通常の事前学習型デノナイジングネットワークのベースライン上での性能が向上することが示された。
論文 参考訳(メタデータ) (2021-01-24T20:48:18Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
本稿では,画像ノイズ空間の構造を明示的に活用するcGANを提案する。
画像ノイズの低次元多様体を直接学習することにより、この多様体にまたがる情報のみをノイズ画像から除去する。
我々の実験に基づいて、我々のモデルは既存の最先端アーキテクチャを大幅に上回っている。
論文 参考訳(メタデータ) (2020-02-11T00:31:31Z) - Spatial-Adaptive Network for Single Image Denoising [14.643663950015334]
本稿では,効率的な単一画像ブラインドノイズ除去のための空間適応型雑音除去ネットワーク(SADNet)を提案する。
本手法は, 定量的かつ視覚的に, 最先端の復調法を超越することができる。
論文 参考訳(メタデータ) (2020-01-28T12:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。