A Discriminative Technique for Multiple-Source Adaptation
- URL: http://arxiv.org/abs/2008.11036v2
- Date: Fri, 12 Feb 2021 15:39:58 GMT
- Title: A Discriminative Technique for Multiple-Source Adaptation
- Authors: Corinna Cortes and Mehryar Mohri and Ananda Theertha Suresh and
Ningshan Zhang
- Abstract summary: We present a new discriminative technique for the multiple-source adaptation, MSA, problem.
Our solution only requires conditional probabilities that can easily be accurately estimated from unlabeled data from the source domains.
Our experiments with real-world applications further demonstrate that our new discriminative MSA algorithm outperforms the previous generative solution.
- Score: 55.5865665284915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new discriminative technique for the multiple-source adaptation,
MSA, problem. Unlike previous work, which relies on density estimation for each
source domain, our solution only requires conditional probabilities that can
easily be accurately estimated from unlabeled data from the source domains. We
give a detailed analysis of our new technique, including general guarantees
based on R\'enyi divergences, and learning bounds when conditional Maxent is
used for estimating conditional probabilities for a point to belong to a source
domain. We show that these guarantees compare favorably to those that can be
derived for the generative solution, using kernel density estimation. Our
experiments with real-world applications further demonstrate that our new
discriminative MSA algorithm outperforms the previous generative solution as
well as other domain adaptation baselines.
Related papers
- Best-Effort Adaptation [62.00856290846247]
We present a new theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights.
We show how these bounds can guide the design of learning algorithms that we discuss in detail.
We report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms.
arXiv Detail & Related papers (2023-05-10T00:09:07Z) - IT-RUDA: Information Theory Assisted Robust Unsupervised Domain
Adaptation [7.225445443960775]
Distribution shift between train (source) and test (target) datasets is a common problem encountered in machine learning applications.
UDA technique carries out knowledge transfer from a label-rich source domain to an unlabeled target domain.
Outliers that exist in either source or target datasets can introduce additional challenges when using UDA in practice.
arXiv Detail & Related papers (2022-10-24T04:33:52Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Certainty Volume Prediction for Unsupervised Domain Adaptation [35.984559137218504]
Unsupervised domain adaptation (UDA) deals with the problem of classifying unlabeled target domain data.
We propose a novel uncertainty-aware domain adaptation setup that models uncertainty as a multivariate Gaussian distribution in feature space.
We evaluate our proposed pipeline on challenging UDA datasets and achieve state-of-the-art results.
arXiv Detail & Related papers (2021-11-03T11:22:55Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
We propose a novel task named Semi-supervised Source Hypothesis Transfer (SSHT), which performs domain adaptation based on source trained model, to generalize well in target domain with a few supervisions.
We propose Consistency and Diversity Learning (CDL), a simple but effective framework for SSHT by facilitating prediction consistency between two randomly augmented unlabeled data.
Experimental results show that our method outperforms existing SSDA methods and unsupervised model adaptation methods on DomainNet, Office-Home and Office-31 datasets.
arXiv Detail & Related papers (2021-07-07T04:14:24Z) - Multi-Source domain adaptation via supervised contrastive learning and
confident consistency regularization [0.0]
Multi-Source Unsupervised Domain Adaptation (multi-source UDA) aims to learn a model from several labeled source domains.
We propose Contrastive Multi-Source Domain Adaptation (CMSDA) for multi-source UDA that addresses this limitation.
arXiv Detail & Related papers (2021-06-30T14:39:15Z) - Unsupervised Multi-source Domain Adaptation Without Access to Source
Data [58.551861130011886]
Unsupervised Domain Adaptation (UDA) aims to learn a predictor model for an unlabeled domain by transferring knowledge from a separate labeled source domain.
We propose a novel and efficient algorithm which automatically combines the source models with suitable weights in such a way that it performs at least as good as the best source model.
arXiv Detail & Related papers (2021-04-05T10:45:12Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.