論文の概要: Mask-guided sample selection for Semi-Supervised Instance Segmentation
- arxiv url: http://arxiv.org/abs/2008.11073v1
- Date: Tue, 25 Aug 2020 14:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 03:59:40.562774
- Title: Mask-guided sample selection for Semi-Supervised Instance Segmentation
- Title(参考訳): 半監督インスタンスセグメンテーションのためのマスク誘導サンプル選択
- Authors: Miriam Bellver, Amaia Salvador, Jordi Torres, Xavier Giro-i-Nieto
- Abstract要約: 半教師付きインスタンスセグメンテーションのためのアノテートするサンプルを決定するためのサンプル選択手法を提案する。
本手法は, サンプルのラベル付きプールに対する擬似マスクの初回予測と, マスクの質を予測するスコアから構成される。
品質スコアからアノテートしたほうがよいサンプルについて検討し, ランダム選択よりも優れた手法を示す。
- 参考スコア(独自算出の注目度): 13.091166009687058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation methods are usually trained with pixel-level annotations,
which require significant human effort to collect. The most common solution to
address this constraint is to implement weakly-supervised pipelines trained
with lower forms of supervision, such as bounding boxes or scribbles. Another
option are semi-supervised methods, which leverage a large amount of unlabeled
data and a limited number of strongly-labeled samples. In this second setup,
samples to be strongly-annotated can be selected randomly or with an active
learning mechanism that chooses the ones that will maximize the model
performance. In this work, we propose a sample selection approach to decide
which samples to annotate for semi-supervised instance segmentation. Our method
consists in first predicting pseudo-masks for the unlabeled pool of samples,
together with a score predicting the quality of the mask. This score is an
estimate of the Intersection Over Union (IoU) of the segment with the ground
truth mask. We study which samples are better to annotate given the quality
score, and show how our approach outperforms a random selection, leading to
improved performance for semi-supervised instance segmentation with low
annotation budgets.
- Abstract(参考訳): イメージセグメンテーションの手法は通常、ピクセルレベルのアノテーションで訓練される。
この制約に対処する最も一般的な解決策は、バウンディングボックスやスクリブルといったより低い形式の監視で訓練された弱い教師付きパイプラインを実装することである。
もうひとつは半教師付き手法で、大量のラベルなしデータと限られた数の強いラベル付きサンプルを利用する。
この第2のセットアップでは、強く注釈付けされるサンプルをランダムに、またはモデル性能を最大化するサンプルを選択するアクティブな学習メカニズムで選択することができる。
本稿では,半教師付きインスタンスセグメンテーションに対してアノテートするサンプルを決定するためのサンプル選択手法を提案する。
提案手法は,まず,ラベルなしのサンプルプールに対する擬似マスクの予測と,マスクの品質を予測するスコアからなる。
このスコアは、グラウンド真理マスクを持つセグメントのインターセクションオーバーユニオン(IoU)の推定値である。
品質スコアからアノテートしたほうがよいサンプルについて検討し,提案手法がランダム選択よりも優れており,半教師付きインスタンスセグメンテーションの性能が向上し,アノテーションの予算が低くなることを示す。
関連論文リスト
- Robust Unsupervised Crowd Counting and Localization with Adaptive
Resolution SAM [61.10712338956455]
本稿では,SEEM(Seegment-Everything-Everywhere Model)を用いた簡易かつ効果的な群集カウント手法を提案する。
密集した群集シーンにおけるSEEMの性能は,高密度領域の多くの人々が欠落していることが主な原因である。
提案手法は,群集カウントにおいて最高の教師なし性能を実現すると同時に,いくつかの教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2024-02-27T13:55:17Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
テスト時間適応(TTA)は、推論中にトレーニング済みのソースモデルをターゲットドメインに継続的に適応させるタスクである。
1つの一般的なアプローチは、推定擬似ラベルによるクロスエントロピー損失を伴う微調整モデルである。
本研究は, 各試料の分類誤差を最小化することで, クロスエントロピー損失の脆弱性がラベルノイズを引き起こすことを明らかにした。
本稿では,プロトタイプ中心の損失計算を特徴とする新しいDPL法を提案する。
論文 参考訳(メタデータ) (2024-01-15T03:33:39Z) - Semi-Supervised Learning for hyperspectral images by non parametrically
predicting view assignment [25.198550162904713]
ハイパースペクトル画像(HSI)分類は、画像中のスペクトル情報が高いため、現在、多くの勢いを増している。
近年,ラベル付きサンプルを最小限に抑えたディープラーニングモデルを効果的に訓練するために,ラベル付きサンプルも自己教師付きおよび半教師付き設定で活用されている。
本研究では,半教師付き学習の概念を利用して,モデルの識別的自己教師型事前学習を支援する。
論文 参考訳(メタデータ) (2023-06-19T14:13:56Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
ディープニューラルネットワークは、H&E染色病理像の核インスタンスセグメンテーションに広く応用されている。
通常、類似したパターンと冗長なパターンを含む核画像のデータセットに全てのピクセルをラベル付けするのは非効率で不要である。
そこで本研究では,アノテートするイメージパッチを数個だけ選択し,選択したサンプルからトレーニングセットを増強し,半教師付きで核分割を実現する,新しいフル核分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-20T14:53:26Z) - Box-supervised Instance Segmentation with Level Set Evolution [41.19797478617953]
本稿では,古典的レベルセットモデルと深層ニューラルネットワークを微妙に統合したボックス教師付きインスタンスセグメンテーション手法を提案する。
単純なマスク管理SOLOv2モデルを用いて、各インスタンスのレベルセットとして、インスタンス認識マスクマップを予測する。
4つの挑戦的ベンチマークの実験結果から,提案手法の先行性能が示された。
論文 参考訳(メタデータ) (2022-07-19T03:59:44Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
ミックスアップスキームは、強化されたトレーニングサンプルを作成するために、サンプルのペアを混ぜることを提案する。
両世界のベストを捉えた、斬新だがシンプルなミックスアップ版を提示する。
論文 参考訳(メタデータ) (2021-12-16T11:27:48Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
インスタンスセグメンテーションのための新規かつ原則的な半教師付きアクティブ学習フレームワークを提案する。
具体的には,クラス,バウンディングボックス,マスクの手がかりを明示的に評価するトリプレットスコア予測(tsp)という不確実性サンプリング戦略を提案する。
医用画像データセットを用いた結果から,提案手法が有意義な方法で利用可能なデータから知識を具現化することを示す。
論文 参考訳(メタデータ) (2020-12-09T02:36:52Z) - A Three-Stage Self-Training Framework for Semi-Supervised Semantic
Segmentation [0.9786690381850356]
本稿では,セマンティックセグメンテーションのための3段階の自己学習フレームワークとして,包括的解を提案する。
本手法の鍵となる考え方は擬似マスク統計情報の抽出である。
次に、一貫性を強制するマルチタスクモデルを用いて擬似マスクの不確実性を減少させる。
論文 参考訳(メタデータ) (2020-12-01T21:00:27Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
オブジェクト検出とセグメンテーションの方法は、トレーニングのための大規模インスタンスレベルのアノテーションに依存します。
本稿では,直感的かつ統一的な半教師付きモデルを提案する。
論文 参考訳(メタデータ) (2020-06-12T22:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。