論文の概要: Prediction of Hilbertian autoregressive processes : a Recurrent Neural
Network approach
- arxiv url: http://arxiv.org/abs/2008.11155v1
- Date: Tue, 25 Aug 2020 16:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 04:37:18.291584
- Title: Prediction of Hilbertian autoregressive processes : a Recurrent Neural
Network approach
- Title(参考訳): ヒルベルト自己回帰過程の予測 : リカレントニューラルネットワークによるアプローチ
- Authors: Cl\'{e]ment Carr\'e and Andr\'e Mas
- Abstract要約: 本稿では,自己相関演算子をニューラルネットワーク学習手法と比較し,古典的予測手法を提案する。
後者は、Recurrent Neural Networksの人気のあるバージョンであるLong Short Term Memory Networkに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The autoregressive Hilbertian model (ARH) was introduced in the early 90's by
Denis Bosq. It was the subject of a vast literature and gave birth to numerous
extensions. The model generalizes the classical multidimensional autoregressive
model, widely used in Time Series Analysis. It was successfully applied in
numerous fields such as finance, industry, biology. We propose here to compare
the classical prediction methodology based on the estimation of the
autocorrelation operator with a neural network learning approach. The latter is
based on a popular version of Recurrent Neural Networks : the Long Short Term
Memory networks. The comparison is carried out through simulations and real
datasets.
- Abstract(参考訳): 自己回帰的ヒルベルトモデル(ARH)は90年代初頭にデニス・ボスクによって導入された。
これは膨大な文学の主題であり、多くの拡張を生んだ。
このモデルは、時系列分析で広く使われる古典的多次元自己回帰モデルを一般化する。
金融、産業、生物学など多くの分野に適用された。
本稿では,ニューラルネットワークを用いた自己相関演算子の推定に基づいて,古典的予測手法を比較する。
後者は、Recurrent Neural Networksの人気のあるバージョンであるLong Short Term Memory Networkに基づいている。
比較はシミュレーションと実際のデータセットを通して行われる。
関連論文リスト
- A Dynamical Model of Neural Scaling Laws [79.59705237659547]
ネットワークトレーニングと一般化の解決可能なモデルとして,勾配降下で訓練されたランダムな特徴モデルを分析する。
我々の理論は、データの繰り返し再利用により、トレーニングとテスト損失のギャップが徐々に増大することを示している。
論文 参考訳(メタデータ) (2024-02-02T01:41:38Z) - Reducing Computational Costs in Sentiment Analysis: Tensorized Recurrent
Networks vs. Recurrent Networks [0.12891210250935145]
特定のテキストに対する聴衆の反応を期待することは、政治、研究、商業産業など、社会のいくつかの側面に不可欠である。
感性分析(英: Sentiment Analysis、SA)は、語彙・統計・深層学習法を用いて、異なるサイズのテキストが肯定的、否定的、中立的な感情を示すかどうかを判断する有用な自然言語処理(NLP)技術である。
論文 参考訳(メタデータ) (2023-06-16T09:18:08Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ARMA Cell: A Modular and Effective Approach for Neural Autoregressive
Modeling [0.0]
ニューラルネットワークにおける時系列モデリングのための,よりシンプルでモジュール的で効果的なアプローチであるARMAセルを紹介する。
実験の結果,提案手法は性能の点で一般的な代替手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-08-31T15:23:10Z) - On the balance between the training time and interpretability of neural
ODE for time series modelling [77.34726150561087]
本稿は,現代のニューラルODEを,時系列モデリングアプリケーションのためのより単純なモデルに還元することはできないことを示す。
ニューラルODEの複雑さは、従来の時系列モデリングツールと比較されるか、超える。
本稿では,ニューラルネットワークとODEシステムを用いた時系列モデリングの新しい視点を提案する。
論文 参考訳(メタデータ) (2022-06-07T13:49:40Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
本研究では,DeepBayes推定器を提案する。
ディープリカレントニューラルネットワークアーキテクチャはオフラインでトレーニングでき、推論中にかなりの時間を節約できる。
提案手法の異なる実例モデルへの適用性を実証し, 最先端手法との詳細な比較を行う。
論文 参考訳(メタデータ) (2022-05-04T18:12:17Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
我々は、時系列予測のための繰り返しニューラルネットワークの適応を提案するために、深部生成モデルと状態空間モデルの概念の進歩を活用する。
私たちのモデルは、すべての関連情報が隠された状態でカプセル化されるリカレントニューラルネットワークのアーキテクチャ的な動作を保ち、この柔軟性により、モデルはシーケンシャルモデリングのために任意のディープアーキテクチャに簡単に統合できます。
論文 参考訳(メタデータ) (2021-04-26T01:43:43Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
専門的なニューラルネットワークアーキテクチャを用いたシミュレーションベース推論の最近の進歩は、ベイズ近似計算の多くの過去の問題を回避している。
本稿では,アモータイズされたベイズパラメータの推定とモデル比較について概説する。
論文 参考訳(メタデータ) (2020-05-08T08:12:15Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。