論文の概要: A Computationally Efficient Multiclass Time-Frequency Common Spatial
Pattern Analysis on EEG Motor Imagery
- arxiv url: http://arxiv.org/abs/2008.11227v1
- Date: Tue, 25 Aug 2020 18:23:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 04:37:12.175806
- Title: A Computationally Efficient Multiclass Time-Frequency Common Spatial
Pattern Analysis on EEG Motor Imagery
- Title(参考訳): 脳波運動画像を用いた計算効率の高いマルチクラス時空間パターン解析
- Authors: Ce Zhang, Azim Eskandarian
- Abstract要約: 共通空間パターン(CSP)は脳波(EEG)運動画像(MI)の一般的な特徴抽出法である
本研究では,従来のCSPアルゴリズムを改良し,マルチクラスMI分類精度を改善し,計算処理の効率化を図る。
- 参考スコア(独自算出の注目度): 164.93739293097605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Common spatial pattern (CSP) is a popular feature extraction method for
electroencephalogram (EEG) motor imagery (MI). This study modifies the
conventional CSP algorithm to improve the multi-class MI classification
accuracy and ensure the computation process is efficient. The EEG MI data is
gathered from the Brain-Computer Interface (BCI) Competition IV. At first, a
bandpass filter and a time-frequency analysis are performed for each experiment
trial. Then, the optimal EEG signals for every experiment trials are selected
based on the signal energy for CSP feature extraction. In the end, the
extracted features are classified by three classifiers, linear discriminant
analysis (LDA), na\"ive Bayes (NVB), and support vector machine (SVM), in
parallel for classification accuracy comparison. The experiment results show
the proposed algorithm average computation time is 37.22% less than the FBCSP
(1st winner in the BCI Competition IV) and 4.98% longer than the conventional
CSP method. For the classification rate, the proposed algorithm kappa value
achieved 2nd highest compared with the top 3 winners in BCI Competition IV.
- Abstract(参考訳): 共通空間パターン (CSP) は脳波(EEG)運動画像(MI)の一般的な特徴抽出法である。
本研究では,従来のCSPアルゴリズムを改良し,マルチクラスMI分類精度を改善し,計算処理の効率化を図る。
EEG MIデータは、Brain-Computer Interface (BCI) Competition IVから収集される。
まず、実験試験毎にバンドパスフィルタと時間周波数解析を行う。
そして、csp特徴抽出のための信号エネルギーに基づいて、実験試験毎に最適な脳波信号を選択する。
抽出された特徴は3つの分類器、線形判別分析(LDA)、na\\"ive Bayes(NVB)、サポートベクトルマシン(SVM)で分類し、分類精度の比較を行う。
その結果,提案アルゴリズムの平均計算時間はfbcsp(bciコンペティションivで1位)よりも37.22%低く,従来のcsp法よりも4.98%長いことがわかった。
分類率は,BCIコンペティションIVの上位3位に比べて,提案アルゴリズムのカッパ値が2番目に高かった。
関連論文リスト
- Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
デュアルブランチ時間スペクトル空間変換器(Dual-TSST)を用いた新しいデコードアーキテクチャネットワークを提案する。
提案するDual-TSSTは様々なタスクにおいて優れており,平均精度80.67%の脳波分類性能が期待できる。
本研究は,高性能脳波デコーディングへの新たなアプローチを提供するとともに,将来のCNN-Transformerベースのアプリケーションにも大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-05T05:08:43Z) - A Comparative Study of Conventional and Tripolar EEG for
High-Performance Reach-to-Grasp BCI Systems [0.14999444543328289]
本研究の目的は、三極性脳波(tEEG)と従来の脳波(tEEG)の有効性を比較することで、運動障害のある個人に対するBCI応用を強化することである。
目標は、どの脳波技術が関連する神経信号を処理し、翻訳するのにより効果的かを決定することである。
論文 参考訳(メタデータ) (2024-01-31T23:35:44Z) - Improved Motor Imagery Classification Using Adaptive Spatial Filters
Based on Particle Swarm Optimization Algorithm [4.93693103484175]
本稿では,粒子群最適化アルゴリズム(PSO)に基づく適応型空間フィルタ解法を提案する。
MIEEG信号分類のためのフィルタバンクと空間フィルタ(FBCSP-ASP)に基づくトレーニングおよびテストフレームワークを設計する。
提案手法の分類精度は, データセット2aと2bでそれぞれ74.61%, 81.19%に達している。
論文 参考訳(メタデータ) (2023-10-29T23:53:37Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Improving EEG Decoding via Clustering-based Multi-task Feature Learning [27.318646122939537]
機械学習は、EEGパターンをより良い復号精度に最適化する有望な技術を提供します。
既存のアルゴリズムは、真のEEGサンプル分布を捕捉する基礎となるデータ構造を効果的に探索しない。
クラスタリングに基づく脳波パターン復号のためのマルチタスク機能学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-12T13:31:53Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。