Say "Sul Sul!" to SimSim, A Sims-Inspired Platform for Sandbox Game AI
- URL: http://arxiv.org/abs/2008.11258v1
- Date: Tue, 25 Aug 2020 20:31:26 GMT
- Title: Say "Sul Sul!" to SimSim, A Sims-Inspired Platform for Sandbox Game AI
- Authors: Megan Charity, Dipika Rajesh, Rachel Ombok, L. B. Soros
- Abstract summary: This paper proposes environment design in the life simulation game The Sims as a novel platform.
The goal is to furnish a house with objects that satisfy the physical needs of a simulated agent.
Empirical studies in a novel open source simulator called SimSim investigate the ability of novelty-based evolutionary algorithms to effectively generate viable environment designs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes environment design in the life simulation game The Sims
as a novel platform and challenge for testing divergent search algorithms. In
this domain, which includes a minimal viability criterion, the goal is to
furnish a house with objects that satisfy the physical needs of a simulated
agent. Importantly, the large number of objects available to the player
(whether human or automated) affords a wide variety of solutions to the
underlying design problem. Empirical studies in a novel open source simulator
called SimSim investigate the ability of novelty-based evolutionary algorithms
to effectively generate viable environment designs.
Related papers
- DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Amorphous Fortress: Observing Emergent Behavior in Multi-Agent FSMs [3.620115940532283]
We introduce a system called Amorphous Fortress -- an abstract, yet spatial, open-ended artificial life simulation.
In this environment, the agents are represented as finite-state machines (FSMs) which allow for multi-agent interaction within a constrained space.
This environment was designed to explore the emergent AI behaviors found implicitly in simulation games such as Dwarf Fortress or The Sims.
arXiv Detail & Related papers (2023-06-22T19:32:53Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Autonomous Driving Simulator based on Neurorobotics Platform [11.25880077022107]
There are many artificial intelligence algorithms for autonomous driving, but directly installing these algorithms on vehicles is unrealistic and expensive.
At the same time, many of these algorithms need an environment to train and optimize.
This report will start with a little research on the Neurorobotics Platform and analyze the potential and possibility of developing a new simulator to achieve the true real-world simulation goal.
arXiv Detail & Related papers (2022-12-31T01:12:27Z) - Real2Sim or Sim2Real: Robotics Visual Insertion using Deep Reinforcement
Learning and Real2Sim Policy Adaptation [8.992053371569678]
In this work, we solve the insertion task using a pure visual reinforcement learning solution with minimum infrastructure requirement.
We also propose a novel sim2real strategy, Real2Sim, which provides a novel and easier solution in policy adaptation.
arXiv Detail & Related papers (2022-06-06T15:27:25Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - Out of the Box: Embodied Navigation in the Real World [45.97756658635314]
We show how to transfer knowledge acquired in simulation into the real world.
We deploy our models on a LoCoBot equipped with a single Intel RealSense camera.
Our experiments indicate that it is possible to achieve satisfying results when deploying the obtained model in the real world.
arXiv Detail & Related papers (2021-05-12T18:00:14Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
We present GeoSim, a geometry-aware image composition process that synthesizes novel urban driving scenes.
We first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data.
The resulting synthetic images are photorealistic, traffic-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.
arXiv Detail & Related papers (2021-01-16T23:00:33Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.