Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation
- URL: http://arxiv.org/abs/2501.06693v2
- Date: Tue, 14 Jan 2025 17:29:06 GMT
- Title: Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation
- Authors: Ziyang Xie, Zhizheng Liu, Zhenghao Peng, Wayne Wu, Bolei Zhou,
- Abstract summary: Vid2Sim is a novel framework that bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation.
Experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate.
- Score: 62.5805866419814
- License:
- Abstract: Sim-to-real gap has long posed a significant challenge for robot learning in simulation, preventing the deployment of learned models in the real world. Previous work has primarily focused on domain randomization and system identification to mitigate this gap. However, these methods are often limited by the inherent constraints of the simulation and graphics engines. In this work, we propose Vid2Sim, a novel framework that effectively bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation. Given a monocular video as input, Vid2Sim can generate photorealistic and physically interactable 3D simulation environments to enable the reinforcement learning of visual navigation agents in complex urban environments. Extensive experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate compared with agents trained with prior simulation methods.
Related papers
- VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion [25.440573256776133]
This paper presents a Real-to-Sim-to-Real framework that generates and physically interactive "digital twin" simulation environments for visual navigation and locomotion learning.
arXiv Detail & Related papers (2025-02-03T17:15:05Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - Real2Sim or Sim2Real: Robotics Visual Insertion using Deep Reinforcement
Learning and Real2Sim Policy Adaptation [8.992053371569678]
In this work, we solve the insertion task using a pure visual reinforcement learning solution with minimum infrastructure requirement.
We also propose a novel sim2real strategy, Real2Sim, which provides a novel and easier solution in policy adaptation.
arXiv Detail & Related papers (2022-06-06T15:27:25Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
We present GeoSim, a geometry-aware image composition process that synthesizes novel urban driving scenes.
We first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data.
The resulting synthetic images are photorealistic, traffic-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.
arXiv Detail & Related papers (2021-01-16T23:00:33Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World [84.57894492587053]
We develop a novel simulator that captures both the power of physics-based and learning-based simulation.
We first utilize ray casting over the 3D scene and then use a deep neural network to produce deviations from the physics-based simulation.
We showcase LiDARsim's usefulness for perception algorithms-testing on long-tail events and end-to-end closed-loop evaluation on safety-critical scenarios.
arXiv Detail & Related papers (2020-06-16T17:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.