An Adversarial Attack Defending System for Securing In-Vehicle Networks
- URL: http://arxiv.org/abs/2008.11278v2
- Date: Sat, 29 Aug 2020 17:19:09 GMT
- Title: An Adversarial Attack Defending System for Securing In-Vehicle Networks
- Authors: Yi Li, Jing Lin, and Kaiqi Xiong
- Abstract summary: We propose an Adversarial Attack Defending System (AADS) for securing an in-vehicle network.
Our experimental results demonstrate that adversaries can easily attack the LSTM-based detection model with a success rate of over 98%.
- Score: 6.288673794889309
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In a modern vehicle, there are over seventy Electronics Control Units (ECUs).
For an in-vehicle network, ECUs communicate with each other by following a
standard communication protocol, such as Controller Area Network (CAN).
However, an attacker can easily access the in-vehicle network to compromise
ECUs through a WLAN or Bluetooth. Though there are various deep learning (DL)
methods suggested for securing in-vehicle networks, recent studies on
adversarial examples have shown that attackers can easily fool DL models. In
this research, we further explore adversarial examples in an in-vehicle
network. We first discover and implement two adversarial attack models that are
harmful to a Long Short Term Memory (LSTM)-based detection model used in the
in-vehicle network. Then, we propose an Adversarial Attack Defending System
(AADS) for securing an in-vehicle network. Specifically, we focus on
brake-related ECUs in an in-vehicle network. Our experimental results
demonstrate that adversaries can easily attack the LSTM-based detection model
with a success rate of over 98%, and the proposed AADS achieves over 99%
accuracy for detecting adversarial attacks.
Related papers
- A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
In-vehicle intrusion detection systems (IDSs) must detect seen attacks and provide a robust defense against new, unseen attacks.
Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches with manual feature extraction.
This paper introduces a cutting-edge, novel, lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations.
arXiv Detail & Related papers (2024-08-15T21:51:56Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
More insidious attacks, which only slightly alter driving behavior, can result in network-wide increases in congestion, fuel consumption, and even crash risk without being easily detected.
We present a traffic model framework for three types of potential cyberattacks: malicious manipulation of vehicle control commands, false data injection attacks on sensor measurements, and denial-of-service (DoS) attacks.
A novel generative adversarial network (GAN)-based anomaly detection model is proposed for real-time identification of such attacks using vehicle trajectory data.
arXiv Detail & Related papers (2023-10-26T01:22:10Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network [6.68111081144141]
X-CANIDS dissects the payloads in CAN messages into human-understandable signals using a CAN database.
X-CANIDS can detect zero-day attacks because it does not require any labeled dataset in the training phase.
arXiv Detail & Related papers (2023-03-22T03:11:02Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - CAN-BERT do it? Controller Area Network Intrusion Detection System based
on BERT Language Model [2.415997479508991]
We propose CAN-BERT", a deep learning based network intrusion detection system.
We show that the BERT model can learn the sequence of arbitration identifiers (IDs) in the CAN bus for anomaly detection.
In addition to being able to identify in-vehicle intrusions in real-time within 0.8 ms to 3 ms w.r.t CAN ID sequence length, it can also detect a wide variety of cyberattacks with an F1-score of between 0.81 and 0.99.
arXiv Detail & Related papers (2022-10-17T21:21:37Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
Modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks.
With the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically.
This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks.
arXiv Detail & Related papers (2022-05-07T03:38:26Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.