When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems
- URL: http://arxiv.org/abs/2306.05923v4
- Date: Mon, 10 Jun 2024 08:09:27 GMT
- Title: When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems
- Authors: Emad Efatinasab, Francesco Marchiori, Denis Donadel, Alessandro Brighente, Mauro Conti,
- Abstract summary: We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
- Score: 53.2306792009435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many research papers have recently focused on behavioral-based driver authentication systems in vehicles. Pushed by Artificial Intelligence (AI) advancements, these works propose powerful models to identify drivers through their unique biometric behavior. However, these models have never been scrutinized from a security point of view, rather focusing on the performance of the AI algorithms. Several limitations and oversights make implementing the state-of-the-art impractical, such as their secure connection to the vehicle's network and the management of security alerts. Furthermore, due to the extensive use of AI, these systems may be vulnerable to adversarial attacks. However, there is currently no discussion on the feasibility and impact of such attacks in this scenario. Driven by the significant gap between research and practical application, this paper seeks to connect these two domains. We propose the first security-aware system model for behavioral-based driver authentication. We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures designed for our constrained environments. We formalize a realistic system and threat model reflecting a real-world vehicle's network for their implementation. When evaluated on real driving data, our models outclass the state-of-the-art with an accuracy of up to 0.999 in identification and authentication. Moreover, we are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN. We show how attackers can still exploit these systems with a perfect attack success rate (up to 1.000). Finally, we discuss requirements for deploying driver authentication systems securely. Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
Related papers
- A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
In-vehicle intrusion detection systems (IDSs) must detect seen attacks and provide a robust defense against new, unseen attacks.
Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches with manual feature extraction.
This paper introduces a cutting-edge, novel, lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations.
arXiv Detail & Related papers (2024-08-15T21:51:56Z) - Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data [2.147995542780459]
Cyber-attacks, including hijacking and spoofing, pose significant threats to connected cars.
This paper presents a novel approach for identifying potential attacks through Radio Access Network (RAN) event monitoring.
The major contribution of this paper is a location anomaly detection module that identifies devices that appear in multiple locations simultaneously.
arXiv Detail & Related papers (2024-07-02T22:42:45Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) have great application prospects in autonomous driving.
BadVLMDriver is the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects.
BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon.
arXiv Detail & Related papers (2024-04-19T14:40:38Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
A growing integration of vehicles with external networks has led to a surge in attacks targeting their Controller Area Network (CAN) internal bus.
As a countermeasure, various Intrusion Detection Systems (IDSs) have been suggested in the literature to prevent and mitigate these threats.
Most of these systems rely on data-driven approaches such as Machine Learning (ML) and Deep Learning (DL) models.
In this paper, we present CANEDERLI, a novel framework for securing CAN-based IDSs.
arXiv Detail & Related papers (2024-04-06T14:54:11Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
More insidious attacks, which only slightly alter driving behavior, can result in network-wide increases in congestion, fuel consumption, and even crash risk without being easily detected.
We present a traffic model framework for three types of potential cyberattacks: malicious manipulation of vehicle control commands, false data injection attacks on sensor measurements, and denial-of-service (DoS) attacks.
A novel generative adversarial network (GAN)-based anomaly detection model is proposed for real-time identification of such attacks using vehicle trajectory data.
arXiv Detail & Related papers (2023-10-26T01:22:10Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
Deep neural networks, which form the basis of such systems, are highly susceptible to a specific type of attack, called adversarial attacks.
A hacker can, even with bare minimum computation, generate adversarial examples (images or data points that belong to another class, but consistently fool the model to get misclassified as genuine) and crumble the basis of such algorithms.
We show two effective techniques, namely Dropout and Denoising Autoencoders, and show their success in preventing such attacks from fooling the model.
arXiv Detail & Related papers (2020-12-10T09:34:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.