Generating (Factual?) Narrative Summaries of RCTs: Experiments with
Neural Multi-Document Summarization
- URL: http://arxiv.org/abs/2008.11293v2
- Date: Tue, 22 Dec 2020 16:50:27 GMT
- Title: Generating (Factual?) Narrative Summaries of RCTs: Experiments with
Neural Multi-Document Summarization
- Authors: Byron C. Wallace, Sayantan Saha, Frank Soboczenski, Iain J. Marshall
- Abstract summary: We evaluate modern neural models for abstractive summarization of relevant article abstracts from systematic reviews.
We find that modern summarization systems yield consistently fluent and relevant synopses, but that they are not always factual.
- Score: 22.611879349101596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of automatically generating a narrative biomedical
evidence summary from multiple trial reports. We evaluate modern neural models
for abstractive summarization of relevant article abstracts from systematic
reviews previously conducted by members of the Cochrane collaboration, using
the authors conclusions section of the review abstract as our target. We enlist
medical professionals to evaluate generated summaries, and we find that modern
summarization systems yield consistently fluent and relevant synopses, but that
they are not always factual. We propose new approaches that capitalize on
domain-specific models to inform summarization, e.g., by explicitly demarcating
snippets of inputs that convey key findings, and emphasizing the reports of
large and high-quality trials. We find that these strategies modestly improve
the factual accuracy of generated summaries. Finally, we propose a new method
for automatically evaluating the factuality of generated narrative evidence
syntheses using models that infer the directionality of reported findings.
Related papers
- Improving Factuality of Abstractive Summarization via Contrastive Reward
Learning [77.07192378869776]
We propose a simple but effective contrastive learning framework that incorporates recent developments in reward learning and factuality metrics.
Empirical studies demonstrate that the proposed framework enables summarization models to learn from feedback of factuality metrics.
arXiv Detail & Related papers (2023-07-10T12:01:18Z) - How Ready are Pre-trained Abstractive Models and LLMs for Legal Case
Judgement Summarization? [4.721618284417204]
In recent years, abstractive summarization models are gaining popularity.
Legal domain-specific pre-trained abstractive summarization models are now available.
General-domain pre-trained Large Language Models (LLMs) are known to generate high-quality text.
arXiv Detail & Related papers (2023-06-02T03:16:19Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
We show that our approach vastly outperforms prior methods in correcting erroneous summaries.
Our model -- FactEdit -- improves factuality scores by over 11 points on CNN/DM and over 31 points on XSum.
arXiv Detail & Related papers (2022-10-22T07:16:19Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
We introduce SNaC, a narrative coherence evaluation framework rooted in fine-grained annotations for long summaries.
We develop a taxonomy of coherence errors in generated narrative summaries and collect span-level annotations for 6.6k sentences across 150 book and movie screenplay summaries.
Our work provides the first characterization of coherence errors generated by state-of-the-art summarization models and a protocol for eliciting coherence judgments from crowd annotators.
arXiv Detail & Related papers (2022-05-19T16:01:47Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries.
At a high level, such neural models can freely generate summaries without any constraint on the words or phrases used.
However, the neural model's abstraction ability is a double-edged sword.
arXiv Detail & Related papers (2021-04-30T08:46:13Z) - Improving Faithfulness in Abstractive Summarization with Contrast
Candidate Generation and Selection [54.38512834521367]
We study contrast candidate generation and selection as a model-agnostic post-processing technique.
We learn a discriminative correction model by generating alternative candidate summaries.
This model is then used to select the best candidate as the final output summary.
arXiv Detail & Related papers (2021-04-19T05:39:24Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z) - Enhancing Factual Consistency of Abstractive Summarization [57.67609672082137]
We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process.
We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems.
arXiv Detail & Related papers (2020-03-19T07:36:10Z) - Learning by Semantic Similarity Makes Abstractive Summarization Better [13.324006587838522]
We compare the generated summaries from recent LM, BART, and the reference summaries from a benchmark dataset, CNN/DM.
Interestingly, model-generated summaries receive higher scores relative to reference summaries.
arXiv Detail & Related papers (2020-02-18T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.