Multi-Fact Correction in Abstractive Text Summarization
- URL: http://arxiv.org/abs/2010.02443v1
- Date: Tue, 6 Oct 2020 02:51:02 GMT
- Title: Multi-Fact Correction in Abstractive Text Summarization
- Authors: Yue Dong, Shuohang Wang, Zhe Gan, Yu Cheng, Jackie Chi Kit Cheung and
Jingjing Liu
- Abstract summary: Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
- Score: 98.27031108197944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained neural abstractive summarization systems have dominated
extractive strategies on news summarization performance, at least in terms of
ROUGE. However, system-generated abstractive summaries often face the pitfall
of factual inconsistency: generating incorrect facts with respect to the source
text. To address this challenge, we propose Span-Fact, a suite of two factual
correction models that leverages knowledge learned from question answering
models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or
auto-regressively replace entities in order to ensure semantic consistency
w.r.t. the source text, while retaining the syntactic structure of summaries
generated by abstractive summarization models. Experiments show that our models
significantly boost the factual consistency of system-generated summaries
without sacrificing summary quality in terms of both automatic metrics and
human evaluation.
Related papers
- AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
We propose AMRFact, a framework that generates perturbed summaries using Abstract Meaning Representations (AMRs)
Our approach parses factually consistent summaries into AMR graphs and injects controlled factual inconsistencies to create negative examples, allowing for coherent factually inconsistent summaries to be generated with high error-type coverage.
arXiv Detail & Related papers (2023-11-16T02:56:29Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
We leverage recent progress on textual entailment models to address this problem for abstractive summarization systems.
We use reinforcement learning with reference-free, textual entailment rewards to optimize for factual consistency.
Our results, according to both automatic metrics and human evaluation, show that our method considerably improves the faithfulness, salience, and conciseness of the generated summaries.
arXiv Detail & Related papers (2023-05-31T21:04:04Z) - Generating Multiple-Length Summaries via Reinforcement Learning for
Unsupervised Sentence Summarization [44.835811239393244]
Sentence summarization shortens given texts while maintaining core contents of the texts.
Unsupervised approaches have been studied to summarize texts without human-written summaries.
We devise an abstractive model based on reinforcement learning without ground-truth summaries.
arXiv Detail & Related papers (2022-12-21T08:34:28Z) - Correcting Diverse Factual Errors in Abstractive Summarization via
Post-Editing and Language Model Infilling [56.70682379371534]
We show that our approach vastly outperforms prior methods in correcting erroneous summaries.
Our model -- FactEdit -- improves factuality scores by over 11 points on CNN/DM and over 31 points on XSum.
arXiv Detail & Related papers (2022-10-22T07:16:19Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries.
At a high level, such neural models can freely generate summaries without any constraint on the words or phrases used.
However, the neural model's abstraction ability is a double-edged sword.
arXiv Detail & Related papers (2021-04-30T08:46:13Z) - Constrained Abstractive Summarization: Preserving Factual Consistency
with Constrained Generation [93.87095877617968]
We propose Constrained Abstractive Summarization (CAS), a general setup that preserves the factual consistency of abstractive summarization.
We adopt lexically constrained decoding, a technique generally applicable to autoregressive generative models, to fulfill CAS.
We observe up to 13.8 ROUGE-2 gains when only one manual constraint is used in interactive summarization.
arXiv Detail & Related papers (2020-10-24T00:27:44Z) - Generating (Factual?) Narrative Summaries of RCTs: Experiments with
Neural Multi-Document Summarization [22.611879349101596]
We evaluate modern neural models for abstractive summarization of relevant article abstracts from systematic reviews.
We find that modern summarization systems yield consistently fluent and relevant synopses, but that they are not always factual.
arXiv Detail & Related papers (2020-08-25T22:22:50Z) - Enhancing Factual Consistency of Abstractive Summarization [57.67609672082137]
We propose a fact-aware summarization model FASum to extract and integrate factual relations into the summary generation process.
We then design a factual corrector model FC to automatically correct factual errors from summaries generated by existing systems.
arXiv Detail & Related papers (2020-03-19T07:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.