論文の概要: Multi-Dimension Fusion Network for Light Field Spatial Super-Resolution
using Dynamic Filters
- arxiv url: http://arxiv.org/abs/2008.11449v1
- Date: Wed, 26 Aug 2020 09:05:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 22:04:52.859362
- Title: Multi-Dimension Fusion Network for Light Field Spatial Super-Resolution
using Dynamic Filters
- Title(参考訳): 動的フィルタを用いた光フィールド空間超解像のための多次元融合ネットワーク
- Authors: Qingyan Sun, Shuo Zhang, Song Chang, Lixi Zhu and Youfang Lin
- Abstract要約: 光フィールドの空間分解能を改善するための新しい学習ベースフレームワークを提案する。
再構成された画像は、サブアパーチャ画像とエピポーラ平面画像の両方において、鮮明な細部と明瞭な線も示している。
- 参考スコア(独自算出の注目度): 23.82780431526054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Light field cameras have been proved to be powerful tools for 3D
reconstruction and virtual reality applications. However, the limited
resolution of light field images brings a lot of difficulties for further
information display and extraction. In this paper, we introduce a novel
learning-based framework to improve the spatial resolution of light fields.
First, features from different dimensions are parallelly extracted and fused
together in our multi-dimension fusion architecture. These features are then
used to generate dynamic filters, which extract subpixel information from
micro-lens images and also implicitly consider the disparity information.
Finally, more high-frequency details learned in the residual branch are added
to the upsampled images and the final super-resolved light fields are obtained.
Experimental results show that the proposed method uses fewer parameters but
achieves better performances than other state-of-the-art methods in various
kinds of datasets. Our reconstructed images also show sharp details and
distinct lines in both sub-aperture images and epipolar plane images.
- Abstract(参考訳): 光界カメラは、3D再構成と仮想現実応用のための強力なツールであることが証明されている。
しかし、光野画像の解像度が限られているため、さらなる情報表示や抽出には多くの困難が伴う。
本稿では,光場の空間分解能を向上させるための新しい学習基盤を提案する。
まず、異なる次元の特徴を並列に抽出し、多次元融合アーキテクチャで融合する。
これらの特徴は動的フィルタの生成に利用され、マイクロレンズ画像からサブピクセル情報を取り出すとともに、差分情報を暗黙的に考慮する。
最後に、アップサンプリング画像に残枝で学習されたより高周波の詳細を加え、最終超解光場を得る。
実験の結果,提案手法のパラメータは少ないが,各種データセットの最先端手法よりも優れた性能が得られることがわかった。
再構成した画像は、サブアパーチャ画像とエピポーラ平面画像の両方において、シャープな細部と異なる線を示す。
関連論文リスト
- RMAFF-PSN: A Residual Multi-Scale Attention Feature Fusion Photometric Stereo Network [37.759675702107586]
複雑な構造空間材料変化領域における2次元画像からの物体の正確な地図の予測は困難である。
画像の解像度の異なるステージとスケールから特徴情報を校正する手法を提案する。
このアプローチは、複雑な領域における物体のテクスチャや幾何学といった、より物理的な情報を保存する。
論文 参考訳(メタデータ) (2024-04-11T14:05:37Z) - Deep 3D World Models for Multi-Image Super-Resolution Beyond Optical
Flow [27.31768206943397]
マルチイメージ・スーパーレゾリューション(MISR)は、複数の画像を組み合わせることで、低解像度(LR)取得の空間分解能を高めることができる。
提案したモデルであるEpiMISRは,光学的流れから離れ,取得過程のエピポーラ幾何学を明示的に用いている。
論文 参考訳(メタデータ) (2024-01-30T12:55:49Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - DiFT: Differentiable Differential Feature Transform for Multi-View
Stereo [16.47413993267985]
我々は、回転運動で密にキャプチャされた画像のスタックから、各ビューで空間的に識別され、図形ごとに不変な画像へと、微分キューを変換することを学ぶ。
これらの低レベル機能は、既存のマルチビューステレオ技術に直接供給し、拡張された3D再構成を行うことができる。
論文 参考訳(メタデータ) (2022-03-16T07:12:46Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Learning Efficient Photometric Feature Transform for Multi-view Stereo [37.26574529243778]
各ビューのperpixelフォトメトリック情報を,空間的特徴とビュー不変の低レベル特徴に変換することを学ぶ。
本フレームワークは,様々な入力データで利用可能な幾何学情報を自動的に適用し,効率的な利用を行う。
論文 参考訳(メタデータ) (2021-03-27T02:53:15Z) - Deep Burst Super-Resolution [165.90445859851448]
バースト超解像タスクのための新しいアーキテクチャを提案する。
我々のネットワークは複数のノイズRAW画像を入力として取り出し、出力として分解された超解像RGB画像を生成する。
実世界のデータのトレーニングと評価を可能にするため,BurstSRデータセットも導入する。
論文 参考訳(メタデータ) (2021-01-26T18:57:21Z) - PlenoptiCam v1.0: A light-field imaging framework [8.467466998915018]
光界カメラは狭帯域深度センシングアプリケーションにおいてリッチな3次元情報検索において重要な役割を担っている。
レンズカメラによる露光から光フィールドを構成する際の重要な障害は、4次元画像データを計算的に調整し、調整し、再配置することである。
特定の望遠カメラ専用のパイプラインを調整することで、全体的な画質を向上させるためのいくつかの試みが提案されている。
論文 参考訳(メタデータ) (2020-10-14T09:23:18Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。