Designing Neural Networks for Real-Time Systems
- URL: http://arxiv.org/abs/2008.11830v1
- Date: Wed, 26 Aug 2020 21:41:37 GMT
- Title: Designing Neural Networks for Real-Time Systems
- Authors: Hammond Pearce, Xin Yang, Partha S. Roop, Marc Katzef, T\'orur
Biskopst{\o} Str{\o}m
- Abstract summary: Most approaches in the literature consider guaranteeing only the functionality of ANN based controllers.
We propose a design pipeline whereby neural networks trained using the popular deep learning framework Keras are compiled to functionally equivalent C code.
- Score: 9.28438818579034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Neural Networks (ANNs) are increasingly being used within
safety-critical Cyber-Physical Systems (CPSs). They are often co-located with
traditional embedded software, and may perform advisory or control-based roles.
It is important to validate both the timing and functional correctness of these
systems. However, most approaches in the literature consider guaranteeing only
the functionality of ANN based controllers. This issue stems largely from the
implementation strategies used within common neural network frameworks -- their
underlying source code is often simply unsuitable for formal techniques such as
static timing analysis. As a result, developers of safety-critical CPS must
rely on informal techniques such as measurement based approaches to prove
correctness, techniques that provide weak guarantees at best. In this work we
address this challenge. We propose a design pipeline whereby neural networks
trained using the popular deep learning framework Keras are compiled to
functionally equivalent C code. This C code is restricted to simple constructs
that may be analysed by existing static timing analysis tools. As a result, if
compiled to a suitable time-predictable platform all execution bounds may be
statically derived. To demonstrate the benefits of our approach we execute an
ANN trained to drive an autonomous vehicle around a race track. We compile the
ANN to the Patmos time-predictable controller, and show that we can derive
worst case execution timings.
Related papers
- Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
This paper addresses the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars.
We propose a partial end-to-end algorithm that decouples the planning and control tasks.
By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.
arXiv Detail & Related papers (2023-12-11T14:27:10Z) - Verified Compositional Neuro-Symbolic Control for Stochastic Systems
with Temporal Logic Tasks [11.614036749291216]
Several methods have been proposed recently to learn neural network (NN) controllers for autonomous agents.
A key challenge within these approaches is that they often lack safety guarantees or the provided guarantees are impractical.
This paper aims to address this challenge by checking if there exists a temporal composition of the trained NN controllers.
arXiv Detail & Related papers (2023-11-17T20:51:24Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Framework for Certification of AI-Based Systems [0.0]
The current certification process for aerospace software is not adapted to "AI-based" algorithms such as deep neural networks.
This paper proposes a framework and principles that could be used to establish certification methods for neural network models.
arXiv Detail & Related papers (2023-02-21T23:08:37Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Towards Optimal VPU Compiler Cost Modeling by using Neural Networks to
Infer Hardware Performances [58.720142291102135]
'VPUNN' is a neural network-based cost model trained on low-level task profiling.
It consistently outperforms the state-of-the-art cost modeling in Intel's line of VPU processors.
arXiv Detail & Related papers (2022-05-09T22:48:39Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
The amount of data generated on windmill farms makes online learning the most viable strategy to follow.
We use Long Short-term Cognitive Networks (LSTCNs) to forecast windmill time series in online settings.
Our approach reported the lowest forecasting errors with respect to a simple RNN, a Long Short-term Memory, a Gated Recurrent Unit, and a Hidden Markov Model.
arXiv Detail & Related papers (2021-07-01T13:13:24Z) - Model-Based Safe Policy Search from Signal Temporal Logic Specifications
Using Recurrent Neural Networks [1.005130974691351]
We propose a policy search approach to learn controllers from specifications given as Signal Temporal Logic (STL) formulae.
The system model is unknown, and it is learned together with the control policy.
The results show that our approach can satisfy the given specification within very few system runs, and therefore it has the potential to be used for on-line control.
arXiv Detail & Related papers (2021-03-29T20:21:55Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z) - Efficient Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers [39.27951763459939]
This work focuses on estimating the forward reachable set of closed-loop systems with NN controllers.
Recent work provides bounds on these reachable sets, yet the computationally efficient approaches provide overly conservative bounds.
This work bridges the gap by formulating a convex optimization problem for reachability analysis for closed-loop systems with NN controllers.
arXiv Detail & Related papers (2021-01-05T22:30:39Z) - Robust Pruning at Initialization [61.30574156442608]
A growing need for smaller, energy-efficient, neural networks to be able to use machine learning applications on devices with limited computational resources.
For Deep NNs, such procedures remain unsatisfactory as the resulting pruned networks can be difficult to train and, for instance, they do not prevent one layer from being fully pruned.
arXiv Detail & Related papers (2020-02-19T17:09:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.