Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks
- URL: http://arxiv.org/abs/2211.16187v1
- Date: Tue, 29 Nov 2022 13:32:38 GMT
- Title: Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks
- Authors: Mathias Lechner, {\DJ}or{\dj}e \v{Z}ikeli\'c, Krishnendu Chatterjee,
Thomas A. Henzinger, Daniela Rus
- Abstract summary: We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
- Score: 58.195261590442406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of training and certifying adversarially robust
quantized neural networks (QNNs). Quantization is a technique for making neural
networks more efficient by running them using low-bit integer arithmetic and is
therefore commonly adopted in industry. Recent work has shown that
floating-point neural networks that have been verified to be robust can become
vulnerable to adversarial attacks after quantization, and certification of the
quantized representation is necessary to guarantee robustness. In this work, we
present quantization-aware interval bound propagation (QA-IBP), a novel method
for training robust QNNs. Inspired by advances in robust learning of
non-quantized networks, our training algorithm computes the gradient of an
abstract representation of the actual network. Unlike existing approaches, our
method can handle the discrete semantics of QNNs. Based on QA-IBP, we also
develop a complete verification procedure for verifying the adversarial
robustness of QNNs, which is guaranteed to terminate and produce a correct
answer. Compared to existing approaches, the key advantage of our verification
procedure is that it runs entirely on GPU or other accelerator devices. We
demonstrate experimentally that our approach significantly outperforms existing
methods and establish the new state-of-the-art for training and certifying the
robustness of QNNs.
Related papers
- Learning-Based Verification of Stochastic Dynamical Systems with Neural Network Policies [7.9898826915621965]
We use a verification procedure that trains another neural network, which acts as a certificate proving that the policy satisfies the task.
For reach-avoid tasks, it suffices to show that this certificate network is a reach-avoid supermartingale (RASM)
arXiv Detail & Related papers (2024-06-02T18:19:19Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
Quantization has emerged as a promising technique to reduce the size of neural networks with comparable accuracy as their floating-point numbered counterparts.
We propose a novel and efficient formal verification approach for QNNs.
In particular, we are the first to propose an encoding that reduces the verification problem of QNNs into the solving of integer linear constraints.
arXiv Detail & Related papers (2022-12-10T03:00:29Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Scalable Verification of Quantized Neural Networks (Technical Report) [14.04927063847749]
We show that bit-exact implementation of quantized neural networks with bit-vector specifications is PSPACE-hard.
We propose three techniques for making SMT-based verification of quantized neural networks more scalable.
arXiv Detail & Related papers (2020-12-15T10:05:37Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.