論文の概要: Unsupervised Surgical Instrument Segmentation via Anchor Generation and
Semantic Diffusion
- arxiv url: http://arxiv.org/abs/2008.11946v1
- Date: Thu, 27 Aug 2020 06:54:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 08:03:18.981347
- Title: Unsupervised Surgical Instrument Segmentation via Anchor Generation and
Semantic Diffusion
- Title(参考訳): アンカー生成と意味拡散による手術器具の教師なしセグメンテーション
- Authors: Daochang Liu, Yuhui Wei, Tingting Jiang, Yizhou Wang, Rulin Miao, Fei
Shan, Ziyu Li
- Abstract要約: この論文では、より手頃な価格で教師なしのアプローチが開発されている。
2017年のMII EndoVis Robotic Instrument Challengeデータセットの実験では、単一の手動アノテーションを使わずに0.71 IoUと0.81 Diceスコアを達成した。
- 参考スコア(独自算出の注目度): 17.59426327108382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical instrument segmentation is a key component in developing
context-aware operating rooms. Existing works on this task heavily rely on the
supervision of a large amount of labeled data, which involve laborious and
expensive human efforts. In contrast, a more affordable unsupervised approach
is developed in this paper. To train our model, we first generate anchors as
pseudo labels for instruments and background tissues respectively by fusing
coarse handcrafted cues. Then a semantic diffusion loss is proposed to resolve
the ambiguity in the generated anchors via the feature correlation between
adjacent video frames. In the experiments on the binary instrument segmentation
task of the 2017 MICCAI EndoVis Robotic Instrument Segmentation Challenge
dataset, the proposed method achieves 0.71 IoU and 0.81 Dice score without
using a single manual annotation, which is promising to show the potential of
unsupervised learning for surgical tool segmentation.
- Abstract(参考訳): 手術器具のセグメンテーションはコンテキスト対応手術室の開発において重要な要素である。
このタスクの既存の作業は、膨大な量のラベル付きデータの監督に大きく依存しています。
対照的に,本稿では,より安価な教師なしアプローチが開発されている。
モデルをトレーニングするために,まず,手作りの粗いキューを用いて,楽器や背景組織の擬似ラベルとしてアンカーを生成する。
そして、隣接するビデオフレーム間の特徴相関により、生成したアンカーのあいまいさを解決するために意味拡散損失を提案する。
2017 MICCAI EndoVis Robotic Instrument Segmentation Challengeデータセットの2進法セグメンテーションタスクの実験では、単一の手動アノテーションを使わずに0.71 IoUと0.81 Diceスコアを達成し、手術器具セグメンテーションにおける教師なし学習の可能性を示すことを約束している。
関連論文リスト
- Amodal Segmentation for Laparoscopic Surgery Video Instruments [30.39518393494816]
医療分野における手術器具の領域にAmodalVisを導入する。
このテクニックは、オブジェクトの可視部と隠蔽部の両方を識別する。
これを実現するために,新しいAmoal Instrumentsデータセットを導入する。
論文 参考訳(メタデータ) (2024-08-02T07:40:34Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
外科的動作認識と意味計測のセグメンテーションのための,最初のマルチモーダルなインビボデータセットを公開し,ロボット補助根治術(RARP)の50の縫合ビデオセグメントを収録した。
この課題の目的は、提供されたデータセットのスケールを活用し、外科領域における堅牢で高精度なシングルタスクアクション認識とツールセグメンテーションアプローチを開発することである。
合計12チームがこのチャレンジに参加し、7つのアクション認識方法、9つの計器のセグメンテーション手法、そしてアクション認識と計器のセグメンテーションを統合した4つのマルチタスクアプローチをコントリビュートした。
論文 参考訳(メタデータ) (2023-12-31T13:32:18Z) - Video-Instrument Synergistic Network for Referring Video Instrument
Segmentation in Robotic Surgery [29.72271827272853]
本研究は,手術用ビデオ機器(RSVIS)の新たな課題を探求する。
与えられた言語表現に基づいて対応する手術器具を自動的に識別・分節することを目的としている。
我々は,ビデオレベルと楽器レベルの両方の知識を学習し,性能を向上させるために,ビデオ機器合成ネットワーク(VIS-Net)を考案した。
論文 参考訳(メタデータ) (2023-08-18T11:24:06Z) - SegMatch: A semi-supervised learning method for surgical instrument
segmentation [10.223709180135419]
腹腔鏡およびロボット手術画像に対する高価なアノテーションの必要性を低減するための半教師付き学習法であるSegMatchを提案する。
SegMatchは、一貫性の正規化と擬似ラベリングを組み合わせた、広範な半教師付き分類パイプラインであるFixMatch上に構築されている。
この結果から,学習目的に非競合データを追加することで,完全教師付きアプローチの性能を超越できることが示唆された。
論文 参考訳(メタデータ) (2023-08-09T21:30:18Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
そこで我々は,TraSeTRを提案する。TraSeTR,TraSeTR,Trace-to-Segment Transformerは,手術器具のセグメンテーションを支援する。
TraSeTRは、機器の種類、位置、アイデンティティとインスタンスレベルの予測を共同で理由付けている。
提案手法の有効性を,3つの公開データセットに対して,最先端の計器型セグメンテーション結果を用いて実証した。
論文 参考訳(メタデータ) (2022-02-17T05:52:18Z) - FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation [16.881624842773604]
FUN-SISについて述べる。
我々は、暗黙の動作情報と楽器形状に依存して、完全に装飾されていない内視鏡ビデオに基づいてフレーム単位のセグメンテーションモデルを訓練する。
手術器具のセグメンテーションの完全教師なしの結果は, 完全に監督された最先端のアプローチとほぼ同等である。
論文 参考訳(メタデータ) (2022-02-16T15:32:02Z) - Co-Generation and Segmentation for Generalized Surgical Instrument
Segmentation on Unlabelled Data [49.419268399590045]
正確な機器追跡と拡張現実オーバーレイには、ロボット支援手術のための外科用機器セグメンテーションが必要です。
深層学習法では手術器具のセグメンテーションに最先端のパフォーマンスが示されたが,結果はラベル付きデータに依存する。
本稿では,ロボットによる手術を含むさまざまなデータセット上で,これらの手法の限定的な一般化性を実証する。
論文 参考訳(メタデータ) (2021-03-16T18:41:18Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Learning Motion Flows for Semi-supervised Instrument Segmentation from
Robotic Surgical Video [64.44583693846751]
本研究は,スパースアノテーションを用いたロボット手術ビデオから半教師楽器のセグメンテーションについて検討する。
生成されたデータペアを利用することで、我々のフレームワークはトレーニングシーケンスの時間的一貫性を回復し、強化することができます。
その結果,本手法は最先端の半教師あり手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-06T02:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。