Unsupervised Surgical Instrument Segmentation via Anchor Generation and
Semantic Diffusion
- URL: http://arxiv.org/abs/2008.11946v1
- Date: Thu, 27 Aug 2020 06:54:27 GMT
- Title: Unsupervised Surgical Instrument Segmentation via Anchor Generation and
Semantic Diffusion
- Authors: Daochang Liu, Yuhui Wei, Tingting Jiang, Yizhou Wang, Rulin Miao, Fei
Shan, Ziyu Li
- Abstract summary: A more affordable unsupervised approach is developed in this paper.
In the experiments on the 2017 MII EndoVis Robotic Instrument Challenge dataset, the proposed method achieves 0.71 IoU and 0.81 Dice score without using a single manual annotation.
- Score: 17.59426327108382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical instrument segmentation is a key component in developing
context-aware operating rooms. Existing works on this task heavily rely on the
supervision of a large amount of labeled data, which involve laborious and
expensive human efforts. In contrast, a more affordable unsupervised approach
is developed in this paper. To train our model, we first generate anchors as
pseudo labels for instruments and background tissues respectively by fusing
coarse handcrafted cues. Then a semantic diffusion loss is proposed to resolve
the ambiguity in the generated anchors via the feature correlation between
adjacent video frames. In the experiments on the binary instrument segmentation
task of the 2017 MICCAI EndoVis Robotic Instrument Segmentation Challenge
dataset, the proposed method achieves 0.71 IoU and 0.81 Dice score without
using a single manual annotation, which is promising to show the potential of
unsupervised learning for surgical tool segmentation.
Related papers
- Amodal Segmentation for Laparoscopic Surgery Video Instruments [30.39518393494816]
We introduce AmodalVis to the realm of surgical instruments in the medical field.
This technique identifies both the visible and occluded parts of an object.
To achieve this, we introduce a new Amoal Instruments dataset.
arXiv Detail & Related papers (2024-08-02T07:40:34Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
We release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP)
The aim of the challenge is to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain.
A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation.
arXiv Detail & Related papers (2023-12-31T13:32:18Z) - Video-Instrument Synergistic Network for Referring Video Instrument
Segmentation in Robotic Surgery [29.72271827272853]
This work explores a new task of Referring Surgical Video Instrument (RSVIS)
It aims to automatically identify and segment the corresponding surgical instruments based on the given language expression.
We devise a novel Video-Instrument Synergistic Network (VIS-Net) to learn both video-level and instrument-level knowledge to boost performance.
arXiv Detail & Related papers (2023-08-18T11:24:06Z) - SegMatch: A semi-supervised learning method for surgical instrument
segmentation [10.223709180135419]
We propose SegMatch, a semi supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images.
SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo labelling.
Our results demonstrate that adding unlabelled data for training purposes allows us to surpass the performance of fully supervised approaches.
arXiv Detail & Related papers (2023-08-09T21:30:18Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
We propose TraSeTR, a Track-to-Segment Transformer that exploits tracking cues to assist surgical instrument segmentation.
TraSeTR jointly reasons about the instrument type, location, and identity with instance-level predictions.
The effectiveness of our method is demonstrated with state-of-the-art instrument type segmentation results on three public datasets.
arXiv Detail & Related papers (2022-02-17T05:52:18Z) - FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation [16.881624842773604]
We present FUN-SIS, a Fully-supervised approach for binary Surgical Instrument.
We train a per-frame segmentation model on completely unlabelled endoscopic videos, by relying on implicit motion information and instrument shape-priors.
The obtained fully-unsupervised results for surgical instrument segmentation are almost on par with the ones of fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-16T15:32:02Z) - Co-Generation and Segmentation for Generalized Surgical Instrument
Segmentation on Unlabelled Data [49.419268399590045]
Surgical instrument segmentation for robot-assisted surgery is needed for accurate instrument tracking and augmented reality overlays.
Deep learning-based methods have shown state-of-the-art performance for surgical instrument segmentation, but their results depend on labelled data.
In this paper, we demonstrate the limited generalizability of these methods on different datasets, including human robot-assisted surgeries.
arXiv Detail & Related papers (2021-03-16T18:41:18Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Learning Motion Flows for Semi-supervised Instrument Segmentation from
Robotic Surgical Video [64.44583693846751]
We study the semi-supervised instrument segmentation from robotic surgical videos with sparse annotations.
By exploiting generated data pairs, our framework can recover and even enhance temporal consistency of training sequences.
Results show that our method outperforms the state-of-the-art semisupervised methods by a large margin.
arXiv Detail & Related papers (2020-07-06T02:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.