Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of
Operating Field
- URL: http://arxiv.org/abs/2008.11954v1
- Date: Thu, 27 Aug 2020 07:12:16 GMT
- Title: Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of
Operating Field
- Authors: Daochang Liu, Tingting Jiang, Yizhou Wang, Rulin Miao, Fei Shan, Ziyu
Li
- Abstract summary: Surgical skill assessment is studied in this paper on a real clinical dataset.
The clearness of operating field (COF) is identified as a good proxy for overall surgical skills.
An objective and automated framework is proposed to predict surgical skills through the proxy of COF.
In experiments, the proposed method achieves 0.55 Spearman's correlation with the ground truth of overall technical skill.
- Score: 18.643159726513133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical skill assessment is important for surgery training and quality
control. Prior works on this task largely focus on basic surgical tasks such as
suturing and knot tying performed in simulation settings. In contrast, surgical
skill assessment is studied in this paper on a real clinical dataset, which
consists of fifty-seven in-vivo laparoscopic surgeries and corresponding skill
scores annotated by six surgeons. From analyses on this dataset, the clearness
of operating field (COF) is identified as a good proxy for overall surgical
skills, given its strong correlation with overall skills and high
inter-annotator consistency. Then an objective and automated framework based on
neural network is proposed to predict surgical skills through the proxy of COF.
The neural network is jointly trained with a supervised regression loss and an
unsupervised rank loss. In experiments, the proposed method achieves 0.55
Spearman's correlation with the ground truth of overall technical skill, which
is even comparable with the human performance of junior surgeons.
Related papers
- Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment [66.6041949490137]
We propose a method that integrates information from transcribed verbal feedback and corresponding surgical video to predict feedback effectiveness.
Our findings show that both transcribed feedback and surgical video are individually predictive of trainee behavior changes.
Our results demonstrate the potential of multi-modal learning to advance the automated assessment of surgical feedback.
arXiv Detail & Related papers (2024-11-17T00:13:00Z) - Automated Surgical Skill Assessment in Endoscopic Pituitary Surgery using Real-time Instrument Tracking on a High-fidelity Bench-top Phantom [9.41936397281689]
Improved surgical skill is generally associated with improved patient outcomes, but assessment is subjective and labour-intensive.
A new public dataset is introduced, focusing on simulated surgery, using the nasal phase of endoscopic pituitary surgery as an exemplar.
A Multilayer Perceptron achieved 87% accuracy in predicting surgical skill level (novice or expert), with the "ratio of total procedure time to instrument visible time" correlated with higher surgical skill.
arXiv Detail & Related papers (2024-09-25T15:27:44Z) - ZEAL: Surgical Skill Assessment with Zero-shot Tool Inference Using Unified Foundation Model [0.07143413923310668]
This study introduces ZEAL (surgical skill assessment with Zero-shot surgical tool segmentation with a unifiEd foundAtion modeL)
ZEAL predicts segmentation masks, capturing essential features of both instruments and surroundings.
It produces a surgical skill score, offering an objective measure of proficiency.
arXiv Detail & Related papers (2024-07-03T01:20:56Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.
We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.
Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - Video-based Surgical Skill Assessment using Tree-based Gaussian Process
Classifier [2.3964255330849356]
This paper presents a novel pipeline for automated surgical skill assessment using video data.
The pipeline incorporates a representation flow convolutional neural network and a novel tree-based Gaussian process classifier.
The proposed method has the potential to facilitate skill improvement among surgery fellows and enhance patient safety.
arXiv Detail & Related papers (2023-12-15T21:06:22Z) - Deep Multimodal Fusion for Surgical Feedback Classification [70.53297887843802]
We leverage a clinically-validated five-category classification of surgical feedback.
We then develop a multi-label machine learning model to classify these five categories of surgical feedback from inputs of text, audio, and video modalities.
The ultimate goal of our work is to help automate the annotation of real-time contextual surgical feedback at scale.
arXiv Detail & Related papers (2023-12-06T01:59:47Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Quantification of Robotic Surgeries with Vision-Based Deep Learning [45.165919577877695]
We propose a unified deep learning framework, entitled Roboformer, which operates exclusively on videos recorded during surgery.
We validated our framework on four video-based datasets of two commonly-encountered types of steps within minimally-invasive robotic surgeries.
arXiv Detail & Related papers (2022-05-06T06:08:35Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Real-time Informative Surgical Skill Assessment with Gaussian Process
Learning [12.019641896240245]
This work presents a novel Gaussian Process Learning-based automatic objective surgical skill assessment method for ESSBSs.
The proposed method projects the instrument movements into the endoscope coordinate to reduce the data dimensionality.
The experimental results show that the proposed method reaches 100% prediction precision for complete surgical procedures and 90% precision for real-time prediction assessment.
arXiv Detail & Related papers (2021-12-05T15:35:40Z) - Towards Unified Surgical Skill Assessment [18.601526803020885]
We propose a unified multi-path framework for automatic surgical skill assessment.
We conduct experiments on the JIGSAWS dataset of simulated surgical tasks, and a new clinical dataset of real laparoscopic surgeries.
arXiv Detail & Related papers (2021-06-02T09:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.