ZEAL: Surgical Skill Assessment with Zero-shot Tool Inference Using Unified Foundation Model
- URL: http://arxiv.org/abs/2407.02738v1
- Date: Wed, 3 Jul 2024 01:20:56 GMT
- Title: ZEAL: Surgical Skill Assessment with Zero-shot Tool Inference Using Unified Foundation Model
- Authors: Satoshi Kondo,
- Abstract summary: This study introduces ZEAL (surgical skill assessment with Zero-shot surgical tool segmentation with a unifiEd foundAtion modeL)
ZEAL predicts segmentation masks, capturing essential features of both instruments and surroundings.
It produces a surgical skill score, offering an objective measure of proficiency.
- Score: 0.07143413923310668
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Surgical skill assessment is paramount for ensuring patient safety and enhancing surgical outcomes. This study addresses the need for efficient and objective evaluation methods by introducing ZEAL (surgical skill assessment with Zero-shot surgical tool segmentation with a unifiEd foundAtion modeL). ZEAL uses segmentation masks of surgical instruments obtained through a unified foundation model for proficiency assessment. Through zero-shot inference with text prompts, ZEAL predicts segmentation masks, capturing essential features of both instruments and surroundings. Utilizing sparse convolutional neural networks and segmentation masks, ZEAL extracts feature vectors for foreground (instruments) and background. Long Short-Term Memory (LSTM) networks encode temporal dynamics, modeling sequential data and dependencies in surgical videos. Combining LSTM-encoded vectors, ZEAL produces a surgical skill score, offering an objective measure of proficiency. Comparative analysis with conventional methods using open datasets demonstrates ZEAL's superiority, affirming its potential in advancing surgical training and evaluation. This innovative approach to surgical skill assessment addresses challenges in traditional supervised learning techniques, paving the way for enhanced surgical care quality and patient outcomes.
Related papers
- OSSAR: Towards Open-Set Surgical Activity Recognition in Robot-assisted
Surgery [13.843251369739908]
We introduce an innovative Open-Set Surgical Activity Recognition (OSSAR) framework.
Our solution leverages the hyperspherical reciprocal point strategy to enhance the distinction between known and unknown classes in the feature space.
To support our assertions, we establish an open-set surgical activity benchmark utilizing the public JIGSAWS dataset.
arXiv Detail & Related papers (2024-02-10T16:23:12Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.
We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.
Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
We release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP)
The aim of the challenge is to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain.
A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation.
arXiv Detail & Related papers (2023-12-31T13:32:18Z) - ST(OR)2: Spatio-Temporal Object Level Reasoning for Activity Recognition
in the Operating Room [6.132617753806978]
We propose a new sample-efficient and object-based approach for surgical activity recognition in the OR.
Our method focuses on the geometric arrangements between clinicians and surgical devices, thus utilizing the significant object interaction dynamics in the OR.
arXiv Detail & Related papers (2023-12-19T15:33:57Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
We introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation.
Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes.
In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning.
arXiv Detail & Related papers (2023-08-17T02:51:01Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Real-time Informative Surgical Skill Assessment with Gaussian Process
Learning [12.019641896240245]
This work presents a novel Gaussian Process Learning-based automatic objective surgical skill assessment method for ESSBSs.
The proposed method projects the instrument movements into the endoscope coordinate to reduce the data dimensionality.
The experimental results show that the proposed method reaches 100% prediction precision for complete surgical procedures and 90% precision for real-time prediction assessment.
arXiv Detail & Related papers (2021-12-05T15:35:40Z) - Towards Unified Surgical Skill Assessment [18.601526803020885]
We propose a unified multi-path framework for automatic surgical skill assessment.
We conduct experiments on the JIGSAWS dataset of simulated surgical tasks, and a new clinical dataset of real laparoscopic surgeries.
arXiv Detail & Related papers (2021-06-02T09:06:43Z) - Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of
Operating Field [18.643159726513133]
Surgical skill assessment is studied in this paper on a real clinical dataset.
The clearness of operating field (COF) is identified as a good proxy for overall surgical skills.
An objective and automated framework is proposed to predict surgical skills through the proxy of COF.
In experiments, the proposed method achieves 0.55 Spearman's correlation with the ground truth of overall technical skill.
arXiv Detail & Related papers (2020-08-27T07:12:16Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
We propose a framework based on reinforcement learning and tree search for joint surgical gesture segmentation and classification.
Our framework consistently outperforms the existing methods on the suturing task of JIGSAWS dataset in terms of accuracy, edit score and F1 score.
arXiv Detail & Related papers (2020-02-20T13:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.