Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification
- URL: http://arxiv.org/abs/2008.12005v2
- Date: Fri, 26 Feb 2021 10:10:49 GMT
- Title: Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification
- Authors: Raoul Heese, Michael Bortz
- Abstract summary: We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints.
Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals.
We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel adaptive optimization algorithm for black-box
multi-objective optimization problems with binary constraints on the foundation
of Bayes optimization. Our method is based on probabilistic regression and
classification models, which act as a surrogate for the optimization goals and
allow us to suggest multiple design points at once in each iteration. The
proposed acquisition function is intuitively understandable and can be tuned to
the demands of the problems at hand. We also present a novel ellipsoid
truncation method to speed up the expected hypervolume calculation in a
straightforward way for regression models with a normal probability density. We
benchmark our approach with an evolutionary algorithm on multiple test
problems.
Related papers
- Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
We present the framework of slowly hyper regression under sparsity, allowing regression models to exhibit slow and sparse variations.
We suggest a procedure that reformulates as a binary convex algorithm.
We show that the resulting model outperforms competing formulations in comparable times across various datasets.
arXiv Detail & Related papers (2021-02-22T04:51:44Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
We present a novel approach to binary optimization for optimal experimental design (OED) for Bayesian inverse problems governed by mathematical models such as partial differential equations.
The OED utility function, namely, the regularized optimality gradient, is cast into an objective function in the form of an expectation over a Bernoulli distribution.
The objective is then solved by using a probabilistic optimization routine to find an optimal observational policy.
arXiv Detail & Related papers (2021-01-15T03:54:12Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.